压力容器焊接技术
焊接技术就是在高温高压的外部环境作用下,通过焊接材料的运用将母料结合在一起的工作手法,在工业发展中有着非常广泛的应用。2、仔细查看产品的表面状况,产品表面不能有明显的擦划伤、气泡等缺陷,产品色彩鲜亮,光泽好。焊接技术能够有效的保证压力容器的密闭性和承压能力,实现大型化的压力容器制造。在压力容器的制造过程中,焊接工作占据着很重要的地位,焊接的工
铝管焊接加工工艺
压力容器焊接技术
焊接技术就是在高温高压的外部环境作用下,通过焊接材料的运用将母料结合在一起的工作手法,在工业发展中有着非常广泛的应用。2、仔细查看产品的表面状况,产品表面不能有明显的擦划伤、气泡等缺陷,产品色彩鲜亮,光泽好。焊接技术能够有效的保证压力容器的密闭性和承压能力,实现大型化的压力容器制造。在压力容器的制造过程中,焊接工作占据着很重要的地位,焊接的工作量占据总工作量的41%左右,在大型压力容器中焊接工作量高达51%。目前,我国的焊接技术多种多样,对于不同的压力容器,需选择与之相应的焊接技术,以保证焊接质量能够满足生产作业的要求。
焊接技术在工业发展占据着重要地位,在压力容器的制造过程中应严格注意对焊接质量的控制,若焊接质量过低,可能会导致压力容器无法承载相应的压力,发生液体的泄露或者气体爆za,将带来十分恶劣的影响,严重的危害人民群众的生命财产安全,焊接技术对压力容器的质量有决定性的影响。在经典电影《变形金刚》里,由汽车变身而成的钢铁机器人给人们留下了很深的印象。
压力容器在现代工业建设的过程中发挥着重要的作用,提高压力容器的质量能够有效的促进工业生产的安全。从理论上说,只要破坏了成分,温度和反应时间中的一个条件,就可以克服或减弱电极烧损。近年来,随着科学技术水平的不断发展和新技术的引进,我国的焊接技术的水准不断提高,焊接技术不断向数字化、机械化、自动化的方向发展,为大型压力容器的制造提供了技术支持。通过新型焊接技术的应用,有效的提高了压力容器的质量,对我国工业制造的发展有着积极的促进作用。

铝焊接加工厂机械:短路过渡焊接对焊缝的影响
CO2电弧焊中短路过渡应用广泛,主要用于薄板及全位置编辑焊接,规范参数为电弧电压焊接电流、焊接速度、焊接回路电感、气体流量及焊丝伸出长度等。
(1)电弧电压和焊接电流,对于一定的焊丝直径及焊接电流(即送丝速度),必须匹配合适的电弧电压,才能获得稳定的短路过渡过程,此时的飞溅少。
不同直径焊丝的短路过渡时参数如表:
焊丝直径(㎜) 0.8 1.2 1.6
电弧电压(V) 18 19 20
焊接电流(A) 100-110 120-135 140-180
(2) 焊接回路电感,电感主要作用:
a 调节短路电流增长速度di/dt, di/dt过小发生大颗粒飞溅至焊丝大段爆断而使电弧熄灭,di/dt 过大则产生大量小颗粒金属飞溅。
b 调节电弧燃烧时间控制母材熔深。
c 焊接速度。焊接速度过快会引起焊缝两侧吹边,焊接速度过慢容易发生烧穿和焊缝组织粗大等缺陷。
d 气体流量大小取决于接头型式板厚、焊接规范及作业条件等因素。通常细丝焊接时气流量为5-15 L/min,粗丝焊接时为20-25 L/min。
e
焊丝伸长度。合适的焊丝伸出长度应为焊丝直径的10-20倍。焊接过程中,尽量保持在10-20㎜范围内,伸出长度增加则焊接电流下降,母材熔深减小,反之则电流增大熔深增加。电阻率越大的焊丝这种影响越明显。
f 电源极性。CO2电弧焊一般采用直流反极性时飞溅小,电弧稳定母材熔深大、成型好,而且焊缝金属含氢量低。
05
细颗粒过渡。
(1)
在CO2气体中,对于一定的直径焊丝,当电流增大到一定数值后同时配以较高的电弧压,焊丝的熔化金属即以小颗粒自由飞落进入熔池,这种过渡形式为细颗粒过渡。
细颗粒过渡时电弧穿透力强母材熔深大,适用于中厚板焊接结构。细颗粒过渡焊接时也采用直流反接法。
(2) 达到细颗粒过渡的电流和电压范围:
焊丝直径(mm) 电流下限值(A) 电弧电压(V)
1.2 300 34-35
1.6 400 35-36
2.0 500 36-38
随着电流增大电弧电压必须提高,否则电弧对熔池金属有冲刷作用,焊缝成形恶化,适当提高电弧电压能避免这种现象。所以河南机械在焊接加工这方面不断的提高自身的技术,这样是更好的促进自我今后完善和提高的关键。然而电弧电压太高飞溅会显著增大,在同样电流下,随焊丝直径增大电弧电压降低。CO2细颗粒过渡和在弧焊中的喷射过渡有着实质性差别。弧焊中的喷射过渡是轴向的,而CO2中的细颗粒过渡是非轴向的,仍有一定金属飞溅。另外弧焊中的喷射过渡界电流有明显较变特征。(尤其是焊接不锈钢及黑色金属)而细颗粒过渡则没有。
铝合金铸造工艺性能,通常理解为在充满铸型、结晶和冷却过程中表现为突出的那些性能的综合。流动性、收缩性、气密性、铸造应力、吸气性。铝合金这些特性取决于合金的成分,但也与铸造因素、合金加热温度、铸型的复杂程度、浇冒口系统、浇口形状等有关。
1 流动性
流动性是指合金液体充填铸型的能力。而且主封孔剂为无机盐,稳定性好,容易控制,满足的环保要求。流动性的大小决定合金能否铸造复杂的铸件。2 收缩性收缩性是铸造铝合金的主要特征之一。一般讲,合金从液体浇注到凝固,直至冷到室温,共分为三个阶段,分别为液态收缩、凝固收缩和固态收缩。合金的收缩性对铸件质量有决定性的影响,它影响着铸件的缩孔大小、应力的产生、裂纹的形成及尺寸的变化。通常铸件收缩又分为体收缩和线收缩,在实际生产中一般应用线收缩来衡量合金的收缩性。
铝合金收缩大小,通常以百分数来表示,称为收缩率。
3 热裂性
铝铸件热裂纹的产生,主要是由于铸件收缩应力超过了金属晶粒间的结合力,大多沿晶界产生从裂纹断口观察可见裂纹处金属往往被氧化,失去金属光泽。裂纹沿晶界延伸,形状呈锯齿形,表面较宽,内部较窄,有的则穿透整个铸件的端面。
不同铝合金铸件产生裂纹的倾向也不同,这是因为铸铝合金凝固过程中开始形成完整的结晶框架的温度与凝固温度之差越大,合金收缩率就越大,产生热裂纹倾向也越大,即使同一种合金也因铸型的阻力、铸件的结构、浇注工艺等因素产生热裂纹倾向也不同。在市场经济环境下,焊接加工厂面临着严峻的考验,如何在激烈的竞争中寻求发展,是每个