微纳米气泡为什么溶解氧高
开展此项科学研究的目地是以便认证“DO对比度的维持”是不是涉及到很大规格(直徑大于或等于100μm)的微纳米气泡的概率。结果显示,全部测量到的微纳米气泡均为收拢型,有利于O2在水中的融解:非常是很大规格的微纳米气泡具备寿命长。除此之外,气泡的使用寿命对海水盐度高宽比比较敏感,在所查验的海水盐度中,使用寿命的是35‰(一切正常海水盐度)。这种結果明显说明,
超氧纳米气泡一体机性能参数
微纳米气泡为什么溶解氧高
开展此项科学研究的目地是以便认证“DO对比度的维持”是不是涉及到很大规格(直徑大于或等于100μm)的微纳米气泡的概率。结果显示,全部测量到的微纳米气泡均为收拢型,有利于O2在水中的融解:非常是很大规格的微纳米气泡具备寿命长。除此之外,气泡的使用寿命对海水盐度高宽比比较敏感,在所查验的海水盐度中,使用寿命的是35‰(一切正常海水盐度)。这种結果明显说明,具备很大规格的微纳米气泡与融解血氧饱和度的维持息息相关。

微纳米气泡的特征
为了阐明微纳米气泡的特征,让我们比较两个模型。 也就是说,“水滴”漂浮在空气中,“气泡”漂浮在水中。 两者似乎相似,但是有什么区别呢? 一个是被空气包围的水,另一个是它是被水包围的空气。 两者都具有气液界面,但是我想着眼于“动态变化”并进行比较。

为了阐明微纳米气泡的特征,让我们比较两个模型。 也就是说,“水滴”漂浮在空气中,“气泡”漂浮在水中。 两者似乎相似,但是有什么区别呢? 一个是被空气包围的水,另一个是微纳米气泡是被水包围的空气。 两者都具有气液界面,但是我想着眼于“动态变化”并进行比较。

旋流式微纳米气泡发生器
开发的微纳米气泡发生器为圆柱型(直径50 mm,高度100 mm),压力水从下部供水口泵送到设备。 内部形成液体涡流。 根据伯努利定理,空气自回旋到由旋生的设备中心轴的减压部分,产生气体回旋流,并在设备出口附近被切碎并变成微纳米气泡。 待泵送的液体流速约为12 L / min,并且微纳米气泡发生器中的气液两相流的旋流速度设置为每秒300至600转。 气体流速/液体流速之比为1/7至1/15。 1999年,旋流式微纳米气泡发生器被用于广岛贝壳等水产养殖,并具有显着的促生长作用,被媒体广泛报道1)。

微纳米气泡的稳定性
测量豆浆中的气泡形成和稳定性,以识别吹入微纳米气泡对蒸煮和加工方法的影响。通过泡沫的起泡能力和高度评估泡沫的形成,通过排水比评估凝结的泡沫稳定性和 发泡力随微纳米气泡泡的吹泡时间的增加而增加;较长的微纳米气泡泡吹泡时间导致较高的泡沫高度,尽管对于高粘性豆浆而言泡沫高度相对不大;增加吹泡时间导致排水比降低。 排水初期发泡能力与排水比之间存在负相关关系。总体结果表明,微纳米气泡的长时间吹泡对于高泡沫形成和稳定性是有效的。 。

(作者: 来源:)