厌氧生物处理水解阶段
水解可定义为复杂的非溶解性的聚合物被转化为简单的溶解性单体或二聚体的过程。
高分子有机物因相对分子量巨大,不能透过细胞膜,因此不可能为细l菌直接利用。厌氧塔部件组成及特点UBF的组成:厌氧塔塔塔体为玻璃钢整体缠绕的圆筒型塔体,无分段连接法兰。它们在阶段被细l菌胞外酶分解为小分子。例如,纤维素被纤维素酶水解为纤
IC厌氧设计
厌氧生物处理水解阶段
水解可定义为复杂的非溶解性的聚合物被转化为简单的溶解性单体或二聚体的过程。
高分子有机物因相对分子量巨大,不能透过细胞膜,因此不可能为细l菌直接利用。厌氧塔部件组成及特点UBF的组成:厌氧塔塔塔体为玻璃钢整体缠绕的圆筒型塔体,无分段连接法兰。它们在阶段被细l菌胞外酶分解为小分子。例如,纤维素被纤维素酶水解为纤维二糖与葡萄糖,淀粉被淀粉酶分解为麦芽糖和葡萄糖,蛋白质被蛋白质酶水解为短肽与氨基酸等。这些小分子的水解产物能够溶解于水并透过细胞膜为细l菌所利用。水解过程通常较缓慢,因此被认为是含高分子有机物或悬浮物废液厌氧降解的限速阶段。多种因素如温度、有机物的组成、水解产物的浓度等可能影响水解的速度与水解的程度。水解速度的可由以下动力学方程加以描述:ρ=ρo/(1+Kh·T)ρ ——可降解的非溶解性底物浓度(g/L);ρo———非溶解性底物的初始浓度(g/L);Kh——水解常数(d-1);T——停留时间(d)
UASB反应器
UASB反应器废水被尽可能均匀的引入反应器的底部,污水向上通过包含颗粒污泥或絮状污泥的污泥床。经膨胀床处理后的废水除一部分参与循环外,其余污水继续上升,污水进入填料区进行剩余COD降解与产沼气过程,提高和保证了出水水质。厌氧反应发生在废水和污泥颗粒接触的过程。在厌氧状态下产生的沼气(主要是碳烷和二氧化碳)引起了内部的循环,这对于颗粒污泥的形成和维持有利。在污泥层形成的一些气体附着在污泥颗粒上,附着和没有附着的气体向反应器顶部上升。上升到表面的污泥撞击三相反应器气体发射l器的底部,引起附着气泡的污泥絮体脱气。气泡释放后污泥颗粒将沉淀到污泥床的表面,附着和没有附着的气体被收集到反应器顶部的三相分离器的集气室。
废水厌氧生物处理技术特点
优点:1、对污水进行处理;2、简单易行;3、灵活适用于大小规模;4、容积负荷率的提高使得对空间的需求降低;5、能耗低;6、剩余污泥量少;7、污泥稳定性良好,具有良好的脱水性能,有利于污泥的重处置;8、厌氧污泥可以在不严重影响其活性和其他重要特性的情况下被保持很长时间;9、低营养需求(对N、P等需求很低)。从液面跑气:敞开式UASB反应器运行中有时会发现从反应器表面有气泡冒出,造成沉淀区污泥上翻,随出水流失。
缺点:1、厌氧微生物对pH、温度和毒性等环境条件极其敏感;2、厌氧反应器的初次启动期很长;3、处理过程会产生恶臭味气体。
废水厌氧生物处理原理
高分子有机物的厌氧降解过程可以被分为四个阶段:水解阶段、发酵(或酸化)阶段、产乙l酸阶段和产碳烷阶段。
四个阶段的反应速度依废水的性质而异,在含纤维素、半纤维素、果胶和脂类等污染物为主的废水中,水解易成为速度限制步骤;简单的糖类、淀粉、氨基酸和一般蛋白质均能被微生物迅速分解,对含这类有机物的废水,产碳烷易成为限速阶段。经过填料区处理后的废水经三相分离器作用后,上清液经出水区排走,颗粒污泥则返回污泥床。虽然厌氧消化过程可分为以上四个过程,但是在厌氧反应器中,四个阶段是同时进行的,并保持某种程度的动态平衡。该平衡一旦被pH值、温度、有机负荷等外加因素所破坏,则首先将使产碳烷阶段受到抑制,其结果会导致低级脂肪酸的积存和厌氧进程的异常变化,甚至导致整个消化过程停滞。
(作者: 来源:)