RTO(蓄热式热氧化炉)
与传统的催化燃烧、直燃式热氧化炉相比,具有热(大于等于90%)、运行成本低、能处理大风量低浓度(相对于废气排放而言)。RTO 装置有两室、三室以及多室装置,两室RTO 装置VOCs 的去除率在95% ~ 98%,三室RTO装置VOCs 去除率可达到98%以上。
1、RTO 原理
两室RTO 没有吹扫工序,在进行阀门切换时,部分V
RTO焚烧炉定做
RTO(蓄热式热氧化炉)
与传统的催化燃烧、直燃式热氧化炉相比,具有热(大于等于90%)、运行成本低、能处理大风量低浓度(相对于废气排放而言)。RTO 装置有两室、三室以及多室装置,两室RTO 装置VOCs 的去除率在95% ~ 98%,三室RTO装置VOCs 去除率可达到98%以上。
1、RTO 原理
两室RTO 没有吹扫工序,在进行阀门切换时,部分VOCs 废气没有经过处理直接排放,从而降低了VOCs 的去除效率。多室RTO 是在废气量非常大的情况下,为保证废气进气的均匀性,增加了同时进气和出气的蓄热室数量。目室RTO 是主流实用装置,较好的兼顾了效率和投资成本。
三室RTO 运行原理:三室RTO 主体结构由燃烧室、三个陶瓷填料床和六个切换阀组成,当有机废气进入陶瓷床1 后,陶瓷床1 放热,有机废气被加热到一定温度后进入燃烧室燃烧,同时产生的高温气体通过陶瓷填料床2,陶瓷床2 吸热蓄热,高温气体被填料床2 冷却后,经过切换阀门排放,填料床3 进行吹扫,以保证原进入填料床3 而未反应的废气进入燃烧室燃烧,而不是直接排放;经过一段时间后,阀门切换,废气从填料床2 进入,填料床2 放热,填料床3 蓄热,填料床1 进行吹扫;然后在填料床3 进气,填料床1 蓄热,填料床2 进行吹扫;这样周期性地切换,就可连续处理有机废气。
即蓄热式焚烧炉,通过对废气焚烧产生的余热采用陶瓷蓄热体进行蓄热,有效利用了焚烧产生的热量,从而达到经济焚烧的目的。焚烧过程温度控制在750~850℃。废气进口温度通常为常温,经过RTO焚烧再蓄热利用后温度达到100℃左右,即废气温升约80~90℃。焚烧炉内氧含量在18%~20%之间,氧含量较高,故对进入RTO的废气LEL浓度控制较严格,需要控制在下限的25%以下。焚烧效率约95%,运行成本和投资成本相比VAR焚烧炉更低一些。1进入RTO焚烧炉的废气要求
(1)主要适用于大风量、低浓度的废气焚烧;
(2)含酸性污染物行预处理,去除绝大部分无机酸;
(3)废气中VOC浓度不能过高,一般控制在下限的25%以下;
(4)废气不能含明显固体、粉尘,否则必须经过预除尘、过滤处理;
(5)禁止混入氢气、气、乙烯等危险性较大的废气。2RTO的局限性
(1)不能处理高含量含氢废气、废气、腐蚀性废气、乙烯废气等危险性废气;
(2)不能处理LEL浓度超过25%的废气,如果高于该浓度要求,则需要经过稀释处理,就会降低焚烧的经济性;
(3)废气量根据设计流量平稳排放,不得突然超量排放;
(4)不能处理废液、废水、固废。
二室RTO工作原理
有机废气通过引风机输入蓄热室1进行升温,吸收蓄热体中存储的热量,随后进入焚烧室进一步燃烧,升温至设定的温度(760℃),在这个过程中有机成分被分解为CO2和H2O。由于废气在蓄热室1内吸收了上一循环回收的热量,从而减少了燃料消耗。
处理过后的高温废气进入蓄热室2进行热交换,热量被蓄热体吸收,随后排放。而蓄热室2存储的热量将可用于下个循环对新输入的废气进行加热。该过程完成后系统自动切换进气和出气阀门改变废气流向,使有机废气经由蓄热室2进入,焚烧处理后由蓄热室1热交换后排放,如此交替切换持续运行。
(作者: 来源:)