RTO工作原理
蓄热式热力氧化器(RTO)作为内部填充蓄热材料的换热器,冷热气体周期替通过蓄热体进行换热。高温气体通过蓄热体时使其温度升高,将热量暂时贮存起来,然后低温气体通过同一蓄热体,将贮存的热量带走。随着蓄热材料的发展,目前RTO的热回收率已达到95%以上,同时占用空间越来越小。RTO辅助燃烧的燃料消耗很少,当有机废气达到一定浓度时,还可以从RTO中输出热量,所以
RTO焚烧炉报价
RTO工作原理
蓄热式热力氧化器(RTO)作为内部填充蓄热材料的换热器,冷热气体周期替通过蓄热体进行换热。高温气体通过蓄热体时使其温度升高,将热量暂时贮存起来,然后低温气体通过同一蓄热体,将贮存的热量带走。随着蓄热材料的发展,目前RTO的热回收率已达到95%以上,同时占用空间越来越小。RTO辅助燃烧的燃料消耗很少,当有机废气达到一定浓度时,还可以从RTO中输出热量,所以RTO在有机废气处理中得到普遍应用。的陶瓷蓄热体为MLM-180,该陶瓷蓄热体具有传统蜂窝陶瓷比表面积大、热容高、传热快、压降低、抗污堵的优点,在欧美等发达的化工和环保行业得到广泛应用。由于RTO的蓄热材料选用陶瓷填料,因此可用来处理腐蚀性或含有颗粒物的有机废气,有机废气与O2发生氧化反应,生成CO2和H2O。这种氧化反应类似于化学上的燃烧过程,但由于有机废气的浓度很低,反应中不产生可见的火焰。通过RTO装置使有机废气与O2发生氧化反应可实现焦化废气的达标排放。
来自工艺的VOCs和有毒气体通过系统风机推进或者吸进氧化炉入口集风管。三通切换阀或者切换碟阀引导气体进入蓄热槽。气体在经过蓄热陶瓷床到燃烧室的过程中被逐渐预热。
经过燃烧室氧化分解后的纯净气体在通过出口处蓄热槽的蓄热陶瓷床时会将热量留在其中。这样出口处的蓄热床得到加热,气体得到降温。出口气体的温度只比入口气体高一点。三通切换阀改变气流进入燃烧室的方向实现回收氧化炉内的热量。高热能回收率降低了燃料的需求节省了运行成本。恩国环保的焚烧炉能够在低废气浓度的情况下实现很高的处理效率和维持自燃而不需燃料消耗。
沸石转轮浓缩+RTO工艺
Rotary Concentration & RTO Technology
采用沸石转轮(如:Munters、SEIBU GIKEN、NICHIAS、TOYOBO、Napotec等)将较中低浓度、中大风量的VOCs废气浓缩成较小风量、高浓度的废气,然后引入RTO进行高温氧化,氧化后产生的一部分能量用于再生沸石转轮,另一部分用于维持RTO反应的自平衡。
该工艺适用于有机废气浓度较低但排放要求较高的场合,具有处理(综合效率≥95%)、运行能耗低等特点,常用于涂布、印刷、电子、涂装等行业。
(作者: 来源:)