高温烘干风机优化思路
本模型采用Nelder - Mead 的优化方法,用于非线性方程针对多目标的优化方法,能寻找到全局较小偏差,同时根据自变量的增加而线性增加计算负荷的大小。由于自变量的变化参数较多,为了避免出现非物理的优化结果,提高优化效率。高温烘干风机以其高效和易调节等优点已成为燃煤发电机组的送、引和一次风机的优选。本模型的优化将分为两个部分
高温烘干风机
高温烘干风机优化思路
本模型采用Nelder - Mead 的优化方法,用于非线性方程针对多目标的优化方法,能寻找到全局较小偏差,同时根据自变量的增加而线性增加计算负荷的大小。由于自变量的变化参数较多,为了避免出现非物理的优化结果,提高优化效率。高温烘干风机以其高效和易调节等优点已成为燃煤发电机组的送、引和一次风机的优选。本模型的优化将分为两个部分。
高温烘干风机设计点的模型优化
在设计点,风机内部流场状况较好,流动损失小,。因为Koch & Smith 的模型考虑了诸多物理因素并被广泛验证了其合理性,因此不予优化。有3 个参数需要优化: 参考冲角、参考落后角和二次流损失。在一维计算时,由于模型中的经验公式是从大量压气机的实验数据中提取出来的,针对某一特定的风机几何尺寸,首先需要对采用的损失和落后角模型进行校验和标定。标定是根据风机在转速990r /min 时,高温烘干风机的安装角不变情况下的实验气动性能曲线。2012年送风机1a发生多次喘振,经测量风机消声器出口风压至-3kpa,判断消声器堵塞。其次,利用优化得到的损失和落后角模型,对安装角分别为+ 10°、+ 5°、- 10°、- 5°的轴流风机的气动性能进行数值模拟并与实验结果进行对比分析,来验证本模型的准确性和可靠性。因为本风机并未给定相关设计点的参数,高温烘干风机模型中只能选取设计转速为990r /min 下率点为设计点,选取实验的气动性能曲线做为优化对象。
高温烘干风机振动也是电厂轴流风机运行中的常见故障。当风机振动达到一定水平时,会导致叶片和轴承不同程度的损坏,或螺钉松动。如果风机振动严重,也会影响风机的安全使用。风机振动主要由叶片非工作面振动引起。这种振动在锅炉引风机中经常发生。造成这种现象的主要原因是,当进入叶片时,气流和叶片的工作面有一定的角度。当角度超过某一临界值时,非工作面就会出现气流漩涡。与单级轴流风机相比,对旋式局部风机具有结构紧凑、风压高、流量大、等特点,广泛应用于矿井长距离掘进工作面通风。此时,气流携带的灰尘将缓慢积聚在非工作面上。而高温烘干风机叶片的形状是翼型,这种类型的叶片容易积灰,当积灰量达到一定量时,在离心力的作用下,大部分的灰尘会被甩出叶轮。而由于粉尘是被动抛出的,其它地方的抛出时间不同,数量不均匀,会导致整个叶轮的质量都是粉尘,破坏了原有的质量平衡,使机组的振动增大。
在解决高温烘干风机旋转失速和喘振的过程中,应采取以下四种措施。首先,要让有关人员了解和掌握轴流风机的特点,并根据实际情况启动和停止运行。在轴流风机运行阶段,应采取措施避免出现喘振区和失速运行。二是对空气预热器密封装置进行了有效的改进。大量的调查研究表明,用搪瓷代替空气预热器的低温受热面,可以有效地改善其腐蚀性,同时也可以排放粉尘,减少漏风。因此,在改进空气预热器密封装置的过程中,可以用搪瓷代替空气预热器内的低温受热面。本公司采用多功能数字环境噪声分析仪对某项目上大风量轴流风机声压级进行测量,结果可知,高温烘干风机的等效连续A声级约为87dB(A),并且噪声在63Hz单频时峰值达98dB(A),在125Hz单频时噪声峰值达96dB(A)。三是改善高温烘干风机叶片形状。制造时应使用更多的耐腐蚀材料。第四,在轴流风机运行过程中,必须定期进行维护和试验,这样可以大大避免轴流风机的一些重大事故,也可以在发生一些小事故时及时修理和抢修。


高温烘干风机轴承箱常见故障的分析与处理。
(1)轴承箱漏油、渗油:进油过多、回油不良、空气平衡管堵塞、骨架密封老化失效、油管接头密封不良、油温过高、油气渗透性过大等,都会引起轴承箱漏油或渗油。可以采取适当措施减少油量,清洁平衡管,更换骨架油封,更换油管和油封,降低机油温度。
(2)轴承中出现铜粉:a)中间轴热膨胀储备不足,轴向推力过大,出现铜粉,应正确调整中间轴预留膨胀量;轴承温度是衡量风机安全运行的一个指标,因为高温烘干风机使用的轴承是进口的,如FAG或SKF。b)酸性物质腐蚀轴承,应立即采取预防措施,并密封轴承。应更换RTS;c)如果油受到污染,必须清洁油系统并更换合格的油;如果油的含水量超过标准,油可以脱水或直接用过滤器更换。更换机油。
(3)高温烘干风机轴承温度高:进油量过小、进油温度过高或轴承被污染后因摩擦和发热而损坏,可使轴承温度升高,适当调整油管或降低油箱的油温或更换损坏的轴承。
(4)轴承振动较大:振动的原因很多,如高温烘干风机叶片损坏、转子不平衡、联接位置差、连接螺栓松动、基础刚度不足、叶片漂移、转子易损件磨损和轴承损坏等,都会引起轴承振动。在采取措施之前,必须找出正确的原因,然后采取具体措施。
(作者: 来源:)