在板式塔中装有一定数量的塔盘, 液体借自身的重量自上而下沉向塔 底(在塔盘板上沿塔径横向流动), 气体靠压差自下而上以鼓泡的形式 穿过塔盘上的液层升向塔顶。在每 层塔盘上气、液两相密切接触,进 行传质,使两相的组分浓度沿塔高
呈阶梯式变化。
填料塔中则装填一定高 度的填料,液体自塔顶沿
填料表面向下流动,作为 连续相的气体自塔底向上 流动,与
塔器订购价
在板式塔中装有一定数量的塔盘, 液体借自身的重量自上而下沉向塔 底(在塔盘板上沿塔径横向流动), 气体靠压差自下而上以鼓泡的形式 穿过塔盘上的液层升向塔顶。在每 层塔盘上气、液两相密切接触,进 行传质,使两相的组分浓度沿塔高
呈阶梯式变化。
填料塔中则装填一定高 度的填料,液体自塔顶沿
填料表面向下流动,作为 连续相的气体自塔底向上 流动,与液体进行逆流传, 两相组分的浓度沿塔高呈 连续变化。
浮阀型 浮阀塔是1950年开发的一种新塔型。其特点是在筛板塔基础上,在每 个筛孔处安置一个可上下移动的阀片。当筛孔气速高时,阀片被顶起上升 ,气速低时,阀片因自重而下降。阀片升降位置随气流量大小作自动调节 ,从而使进入液层的气速基本稳定。又因气体在阀片下侧水平方向进入液 层,既减少液沫夹带量,又延长气液接触时间,故收到很好的传质效果。 有多种浮阀形式,但基本结构特点相似。置于厂房内的塔器,只要它与厂房不相关联亦可看成是自支撑的塔器,只是风载荷计算时,将基本风压取为零即可。

塔式容器在受风载荷或其他载荷作用时,塔壳与裙座壳间的连接焊缝按规范要求应进行强度校核,一般认为只要强度校核满足规范要求即可,而在工程实际操作过程中,情况往往不是这样。当塔式容器的操作温度较高或温度变化较大,该连接焊缝将承受较大的热应力或温差应力,若该应力得不到可靠的控制,将对塔式容器的安全运行造成极大威胁,甚至造成该连接焊缝的疲劳破坏。针对这种情况,国外首先采用了一种类似隔气圈的结构来减轻温差应力的影响,其作用为:确保隔气圈内外空气不直接接触,尽量避免发生热交换,且隔气圈内的空气相对静止,更像一个保温层,当塔式容器操作温度较高或温度变化较大时,隔气圈内的空气被加热,反过来,隔气圈内空气也加热相连部位金属,使该部位金属壁温变化幅度较小,从而提高设备受疲劳破坏的循环次数。一般情况下应考虑如下方面:1、对于腐蚀性物系,通常选用填料塔。
塔器属于高耸结构,它承受的载荷除压力、温度载荷外,尚有风载荷,载荷与重量载荷等。在压力较低时(包括内压和外压),风载荷或载荷就成为塔器安全运行的主要载荷。而这些侧向载荷在塔壳和裙座壳截面中产生的应力是弯曲应力(这里对整个塔截面而言)。
一般来说,在相同的风载荷与载荷条件下,塔器的高度越高,高度与直径比越大,壳体的弯曲应力也越大;低矮或高度与直径之比较小的塔器,壳体中的弯曲应力不会太大,因为前者力臂较小,后者壳体的抗弯截面系数增大很快。
所以低矮塔器壁厚大多数取决于压力载荷或壁厚。为了减小设计工作量,将这部分塔器排除在外,从安全角度讲不会出现太大的问题。至于裙座仍应按常压容器规定计算其风载荷与载荷。
(作者: 来源:)