而在余热回收中不可或缺的装置便是换热器,所以,一直以来烟气余热回收器利用换热器的强化传热技术就备受的关注,使得新型节能的换热器层出不穷。实践应用经过转炉余热深度回收工业性试验的实践应用,认为余热锅炉验证性试验是成功的。自20世纪60年代起国外便开始实验与研究热管换热器技术,在80年始了方形板片板壳式换热器的使用,而我国自1985年起,开始引进国外的“烟气深度
烟气余热回收器价格
而在余热回收中不可或缺的装置便是换热器,所以,一直以来烟气余热回收器利用换热器的强化传热技术就备受的关注,使得新型节能的换热器层出不穷。实践应用经过转炉余热深度回收工业性试验的实践应用,认为余热锅炉验证性试验是成功的。自20世纪60年代起国外便开始实验与研究热管换热器技术,在80年始了方形板片板壳式换热器的使用,而我国自1985年起,开始引进国外的“烟气深度冷却余热利用”技术,引发了国内烟气回收余热利用换热器的研究。
余热回收系统设备组成
1)移动烟道
移动烟道两端分别连接炉盖第四孔和燃烧沉降室,移动烟道要满足炉盖旋入或旋出时不与第四孔弯烟道发生干涉,并且还要满足在吸入高温烟气的同时,也要吸入足量的外界空气,供后部沉降室内蓄积的CO的二次燃烧,故设计为活动烟道。
2)燃烧沉降室
沉降室主要作用有两个,一是从电弧炉内排出的大颗粒粉尘有足够的时间沉降,避免大颗粒进入后部设备,以防导致设备堵塞或损坏;二是烟气中未燃烧的CO在沉降室内可继续燃烧,防止CO进入后续工艺设备,导致安全事故发生,燃烧需要的氧气从第四孔烟道和移动烟道连接处混入空气中得到。电炉生产工艺的特点决定了烟气温度和流量均具有较大的周期波动性,同时电炉烟气含尘特点对后续烟气余热回收器的布置和结构形式的要求很高。

钢铁工业是环境污染、能源消耗大户,烟气除尘、余热回收利用是钢铁工业保护环境 、 节约能源的对策之一。回收烟气热量:Q1=烟气流量×烟气密度×烟气的比热×烟气温差锅炉给水吸收的有效热量:Q2=被加热的锅炉给水流量×水的比热×水的温差增加的能源损耗:烟气管道阻力增加,使得锅炉引风机出力增大,电耗增加。电炉在生产过程中产生大量含尘、CO的高温烟气,平均每吨钢产生的量为18-20kg,随烟气带走的热量约150M .严重浪费能源、污染环境。随着电炉技术迅速、的发展,其烟气余热回收利用及除尘技术也得到了发展。电炉炼钢过程中会产生大量的高温含尘烟气(约1000~1400℃),烟气显热占电炉炼钢总能耗的10%以上。目前国内对烟气冷却方式主要为水冷方式,即冶炼所产生的一次烟气从其第四孔抽出,经水冷弯头、水冷滑套、燃烧沉降室、水冷烟道冷却后,再经空冷器或喷雾冷却塔降到约350℃ ,后与来自大密闭罩及屋顶除尘罩温度为60℃的二次废气相混合,混合后的废气温度130℃,进除尘器净化,并经风机排往大气。该方式实现了烟气降温除尘的目的,缺点是:一方面消耗大量的电能和水,另一方面大量高温烟气的热量没有得到回收利用。
(作者: 来源:)