高速数据采集存储
鲁科数据生产、销售高速数据采集板卡,我们为您分析该产品的以下信息。
随着计算机技术发展,计算机总线速率、处理能力与存储技术得到了发展。就存储技术而言相比于五年前,现在不论是传输速率,存储速度与存储容量均有了不同数量级的变化。如现在的PCIe Express总线可以实现3GB/s (Gen2.0, X8)以上,或6GB/s(Gen3.0,
高速数据采集存储设备价格
高速数据采集存储
鲁科数据生产、销售高速数据采集板卡,我们为您分析该产品的以下信息。
随着计算机技术发展,计算机总线速率、处理能力与存储技术得到了发展。就存储技术而言相比于五年前,现在不论是传输速率,存储速度与存储容量均有了不同数量级的变化。如现在的PCIe Express总线可以实现3GB/s (Gen2.0, X8)以上,或6GB/s(Gen3.0, X8)以上的传输速率;以下内容由鲁科数据为您提供,今天我们来分享高速数据采集板卡的相关内容,希望对同行业的朋友有所帮助。而SATA磁盘容量也可以轻易实现动辄几T,多动几十T的规模。
在高速数据采集领域(一般指的雷达、无线电、光电、激光等高频物理信号),因试验、监测及装备的需要,对于原始信号的长时间捉与存储需求也日益增强。做为实现这些需求的手段,一般搭建一套高速数据采集存储系统是比较常规的方式。做为商用级的采集存储供应商,一般会基于不同应用场景提供了不同的数据采集存储方案。技术指标科学技术的发展和数据采集技术的广泛应用,对数据采集系统的许多技术指标,如采样率、分辨率、存储深度、数字信号处理速度、抗干扰能力等方面提出了越来越高的要求,其中前两项为评价超高速数据采集系统的重要技术指标。
数据采集技术及超高速数据采集系统
在数据采集系统中,处理流程一般包括滤波、采样、存储和处理四个环节。一个模拟信号首先经过预采样滤波器,对信号进行调理;然后,采样器在每一个采样时刻读出一个数据;再由模数转换器ADC量化为二进制数码,数据之后保存到存储器用于数字信号处理。超高速数据采集系统即采用超高采样速率对数据进行采集的系统。技术指标科学技术的发展和数据采集技术的广泛应用,对数据采集系统的许多技术指标,如采样率、分辨率、存储深度、数字信号处理速度、抗干扰能力等方面提出了越来越高的要求,其中前两项为评价超高速数据采集系统的重要技术指标。通过将其与长采集存储器相结合,这些数字化器较小化了这个经典问题。
以上就是为大家介绍的全部内容,希望对大家有所帮助。如果您想要了解更多高速数据采集板卡的知识,欢迎拨打图片上的热线联系我们。
数据采集卡的精度
精度是指数据采集卡在满量程范围内任意一点的输出值相对于其理想值之间的偏离程度。数据采集卡的精度受卡上放大倍数的影响比较大,一般厂商给出的数据采集卡的精度指标都很高,12位AD采集卡的精度在满程输入电压(FSR)的0.01%+1LSB,但在实际检测过程中,受到很多因素,特别是外部电磁干扰信号,电源干扰和传感器噪声等影响因素的限制,检测的精度往往达不到这样的水平。数据采集卡,即实现数据采集功能的计算机扩展卡,可以通过USB、PXI、PCI、PCIExpress、火线(1394)、PCMCIA、ISA、CompactFlash、485、232、以太网、各种无线网络等总线接入计算机。
在实际应用中,干扰严重的环境可能使采样结果与厂商标称的精度相差甚远,在弱信号(例如热电偶信号)和高阻抗输出信号(例如压电陶瓷传感器、锆氧传感器输出信号)的才集中尤其如此,原因是逐次比较型AD采集的是微秒级时刻的电信号,而实际输入的信号是传感器输出信号与干扰信号的叠加,在这些干扰信号中,工频干扰信号是比较普遍的,防止工频干扰信号比较有效的方法是与工频信号同步,在工频周期时间内连续采集若干个信号取平均值,这样操作会降低实际的采样速度,在不需要高速采集但要求较高的精度采样的情况下可以得到比较好的效果。输出信号受数模转换器(D/A)的建立时间、转换率、分辨率等因素影响。
高速数据采集卡之FMC子板
在高速数据采集领域,FPGA因灵活性和可扩展性为连接不同的外部I/O提供了必要的条件。但如果不是统一的io标准,则会造成连接器和子板种类众多,接口中不统一,重复设计的局面。为了避免这些问题,之前的设计一般遵循PMC和XMC标准,但因这些标准多年前制订,而且主要针对单板计算机之类的解决方案,而不是FPGA,故而需要一种针对FPGA的子板标准,这种规范被叫FMC规范。触发输入可用于触发使用的许多不同的上升沿或下降沿的触发模式,如1的卡,或其他触发信号结合时,它们可以被用来作为栅极信号。
(作者: 来源:)