机器视觉(Machine vision)机器视觉系统的特点是提高生产的柔性和自动化程度。在一些不视觉系统工作原理简图适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉;Color检测一般而言,从彩色CCD相机中获取的图像都是RGB图像。同时在大批量工业生产过程中,用人工视觉检查产量效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的
机器视觉检测系统设备
机器视觉(Machine vision)机器视觉系统的特点是提高生产的柔性和自动化程度。在一些不视觉系统工作原理简图适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉;Color检测一般而言,从彩色CCD相机中获取的图像都是RGB图像。同时在大批量工业生产过程中,用人工视觉检查产量效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度。而且机器视觉易于实现信息集成,是实现计算机集成制造的基础技术。
在行业应用方面,主要有制药、包装、电子、汽车制造、半导体、纺织、、交通、物流等行业,用机器视觉技术取代人工,可以提供生产效率和产量。例如在物流行业,可以使用机器视觉技术进行快递的分拣分类,不会出现大多快递公司人工进行分拣,减少物品的损坏率,可以提高分拣效率,减少人工劳动。 [6] 产展编辑机器视觉的研究是从20世纪60年代中期美国学者L.R.罗伯兹关于理解多面体组成的积木世界研究开始的。当时运用的预处理、边缘检测、轮廓线构成、对象建模、匹配等技术,后来一直在机器视觉中应用。罗伯兹在图像分析过程中,采用了自底向上的方法。用边缘检测技术来确定轮廓线,用区域分析技术将图像划分为由灰度相近的像素组成的区域,这些技术统称为图像分割。其目的在于用轮廓线和区域对所分析的图像进行描述,以便同机内存储的模型进行比较匹配。实践表明,只用自底向上的分析太困难,必须同时采用自顶向下,即把目标分为若干子目标的分析方法,运用启发式知识对对象进行预测。这同言语理解中采用的自底向上和自顶向下相结合的方法是一致的。在图像理解研究中,A.古兹曼提出运用启发式知识,表明用符号过程来解释轮廓画的方法不必求助于诸如二乘法匹配之类的数值计算程序。70年代,机器视觉形成几个重要研究分支:①目标制导的图像处理;②图像处理和分析的并行算法;③从二维图像提取三维信息;计算要求的工业镜头焦距时,必须使用工作距离高速相机按照不同标准可分为:标准分辨率数字相机和模拟相机等相机(2张)。④序列图像分析和运动参量求值;⑤视觉知识的表示;⑥视觉系统的知识库等。

测量单元的校准将会影响检测精度,因而受到特别重视。每个激光器/摄像机单元均在离线状态下经过校准。同时还有一个在离线状态下用三坐标测量机校准过的校准装置,可对摄像顶进行在线校准。检测系统以每40秒检测一个车身的速度,检测三种类型的车身。系统将检测结果与人、从CAD模型中撮出来的合格尺寸相比较,测量精度为±0.1mm。 ROVER的质量检测人员用该系统来判别关键部分的尺寸一致性,如车身整体外型、门、玻璃窗口等。以后可以随时对信息进行检索查询,管理者可以获知某段时间内流水线的忙闲,为下一步的工作作出安排。实践证明,该系统是成功的,并将用于ROVER公司其它系统列汽车的车身检测。

(作者: 来源:)