运动控制器的控制形式
点位运动控制:即仅对终点位置有要求,与运动的中间过程即运动轨迹无关。相应的运动控制器要求具有的定位速度,在运动的加速段和减速段,采用不同的加减速控制策略。
在加速运动时,为了使系统能够加速到设定速度,往往进步系统增益和加大加速度,在减速的末段采用s 曲线减速的控制策略。为了防止系统到位后震动,规划到位后,又会适当减小系统的增益。
智能加湿器控制器设计
运动控制器的控制形式
点位运动控制:即仅对终点位置有要求,与运动的中间过程即运动轨迹无关。相应的运动控制器要求具有的定位速度,在运动的加速段和减速段,采用不同的加减速控制策略。
在加速运动时,为了使系统能够加速到设定速度,往往进步系统增益和加大加速度,在减速的末段采用s 曲线减速的控制策略。为了防止系统到位后震动,规划到位后,又会适当减小系统的增益。所以,点位运动控制器往往具有在线可变控制参数和可变加减速曲线的能力。
连续轨迹运动控制:该控制又称为轮廓控制,主要应用在传统的数控系统、切割系统的运动轮廓控制。相应的运动控制器要解决的题目是如何使系统在高速运动的情况下,既要保证系统加工的轮廓精度,还要保证刀具沿轮廓运动时的切向速度的恒定。对小线段加工时,有多段程序预处理功能。
同步运动控制:是指多个轴之间的运动协调控制,可以是多个轴在运动全程中进行同步,也可以是在运动过程中的局部有速度同步,主要应用在需要有电子齿轮箱和电子凸轮的功能的系统控制中。产业上有印染、印刷、造纸、轧钢、同步剪切等行业。相应的运动控制器的控制算法常采用自适应前馈控制,通过自动调节控制量的幅值和相位,来保证在输进端加一个与干扰幅值相等、相位相反的控制作用,以抑制周期干扰,保证系统的同步控制。
智能控制器的产业分工不断扩展
随着智能控制技术发展,终端产品智能化程度越来越高,下游终端企业对智能控制器的要求更高,智能控制器生产企业在改善生产工艺的基础上,不断加大研发投入,形成了一定的技术积累,行业少数企业逐渐参与到下游客户终端产品研发设计中,与客户共同研发新产品,甚至自主研发并生产终端产品,智能控制器的产业分工不断往下游扩展。
什么是智能控制器
智能控制器”顾名思义就是智能化的控制着某种电子机器设备的一种小型设备。智能控制器,广泛的被运用到家用电器、电动工具、汽车电子、健康护理电子产品当中,甚至现在当下较流行较潮流的智能家居建筑中也有广泛的应用。
期望大家在选购控制器时多一份细心,少一份浮躁,不要错过细节疑问。想要了解更多控制器的相关资讯,欢迎拨打网站上的热线电话!!!
智能控制器技术基础及特点
智能控制以控制理论、计算机科学、人工智能、运筹学等学科为基础,扩展了相关的理论和技术,其中应用较多的有模糊逻辑、神经网络、遗传算法等理论,以及自适应控制、自组织控制和自学习控制等技术。
模糊逻辑用模糊语言描述系统,既可以描述应用系统的定量模型,也可以描述其定性模型。模糊逻辑可适用于任意复杂的对象控制。
遗传算法作为一种非确定的拟自然随机优化工具,具有并行计算、寻找全局较优解等特点,它可以和其他技术混合使用,用于智能控制的参数、结构或环境的较优控制。
神经网络是利用大量的神经元,按一定的拓扑结构进行学习和调整的自适应控制方法。它能表示出丰富的特性,具体包括并行计算、分布存储、可变结构、高度容错、非线性运算、自我组织、学习或自学习。这些特性是人们长期追求和期望的系统特性。且神经网络在智能控制的参数、结构或环境的自适应、自组织、自学习等控制方面具有的能力。
智能控制的相关技术与控制方式结合、或综合交叉结合,构成风格和功能各异的智能控制系统和智能控制器,这也是智能控制技术方法的一个主要特点。
(作者: 来源:)