热敏电阻消耗的能量对温度的影响用耗散常数来表示,它指将热敏电阻温度提高比环境温度高1℃所需要的毫瓦数。耗散常数因热敏电阻的封装、管脚规格、包封材料及其它因素不同而不一样。
系统所允许的自热量及限流电阻大小由测量精度决定,测量精度为±5℃的测量系统比精度为±1℃测量系统可承受的热敏电阻自热要大。
应注意拉升电阻的阻值必须进行计算,以限定整个测量温度范围内的自
负温度系数热敏电阻订做
热敏电阻消耗的能量对温度的影响用耗散常数来表示,它指将热敏电阻温度提高比环境温度高1℃所需要的毫瓦数。耗散常数因热敏电阻的封装、管脚规格、包封材料及其它因素不同而不一样。
系统所允许的自热量及限流电阻大小由测量精度决定,测量精度为±5℃的测量系统比精度为±1℃测量系统可承受的热敏电阻自热要大。
应注意拉升电阻的阻值必须进行计算,以限定整个测量温度范围内的自热功耗。给定出电阻值以后,由于热敏电阻阻值变化,耗散功率在不同温度下也有所不同。
热敏电阻包括正温度系数(PTC)和负温度系数(NTC)热敏电阻,以及临界温度热敏电阻(CTR).它们的电阻-温度特性如.热敏电阻的主要特点是:①灵敏度较高,其电阻温度系数要比金属大10~100倍以上,能检测出10-6℃的温度变化;②工作温度范围宽,常温器件适用于- 55℃~315℃,高温器件适用温度高于315℃(目前高可达到2000℃),低温器件适用于-273℃~55℃;热敏电阻较大的一个优势就是它的灵敏度非常的高,这一点大家在平时的使用中就是可以看到的,毕竟现在的人们都是非常的在意这个用品的。NTC热敏电阻是常用的温度传感器感温元件,NTC温度传感器的发展要求热敏电阻具有更好的电性能参数,为此耐高温玻璃封装的工艺显得尤为重要,将半导体陶瓷采用玻璃壳包裹,引线采用杜美思线。它的温度系数是非常的高的,要比金属的温度系数大上百倍以上,并且它有着非常广泛的工作范围,可以使用零下五十多度的温度到零上三百多度的温度,如果是高温的器件的话,现在可以达到两千度左右。
NTC热敏电阻(负温度系数热敏电阻),因其的特性:随着温度升高,阻值降低。常被用在开关电源过流保护上,那么如何挑选合适的开关电源热敏电阻呢?
热敏电阻通常是由对温度极为灵敏、热惰性很小的锰、钴、镍的氧化物烧成半导体陶瓷材料制成的一种非线性电阻,其阻值会跟着温度的改动而改动。这种特性能够被用在测量一定区域内的温度数据,同时还能够根据温度变化调整电阻值。热敏电阻按温度系数分为负温度系数(NTC)、正温度系数(PTC)和临界温度系数三类。正温度系数电阻的阻值随温度升高而增大,负温度系数电阻的阻值随温度升高而减小,临界温度系数电阻的阻值在临界温度附近时底子为零。
负温度系数(NTC: Negative Temperature Coefficient)热敏电阻器是一种电阻值随着温度的升高而减小的热敏电阻器。热电阻热敏电阻是用半导体材料,大多为负温度系数,即阻值随温度增加而降低。其阻值的变化可以由外在的环境温度或是回路中电流引起的元件自热引起。这种电阻值随着温度改变的可预知性是热敏电阻器应用的基础。 负温度系数热敏电阻器属于半导体的一种,通常是由锰、钴、镍、铜、铁等组成的过渡金属氧化物通过烧结后形成不同的形状和尺寸。通过改变半导体中元素的组成和本体尺寸,室温中产品的阻值范围可以从1Ω到106Ω,温度系数从-2%/℃到-6.5% /℃。
(作者: 来源:)