变压器出现短路故障原因
因变压器出口短路导致变压器内部故障和事故的原因很多,也比较复杂,它与结构设计、原材料的质量、工艺水平、运行工况等因数有关,但电磁线的选用是关键。从近几年解剖变压器,对其事故进行分析来看,与电磁线有关的大致有以下几个原因。
1、基于变压器静态理论设计而选用的电磁线,与实际运行时作用在电磁线上的应力差异较大。
2、目前各厂家的
三相变压器价钱
变压器出现短路故障原因
因变压器出口短路导致变压器内部故障和事故的原因很多,也比较复杂,它与结构设计、原材料的质量、工艺水平、运行工况等因数有关,但电磁线的选用是关键。从近几年解剖变压器,对其事故进行分析来看,与电磁线有关的大致有以下几个原因。
1、基于变压器静态理论设计而选用的电磁线,与实际运行时作用在电磁线上的应力差异较大。
2、目前各厂家的计算程序中是建立在漏磁场的均匀分布、线匝直径相同、等相位的力等理想化的模型基础上而编制的,而事实上变压器的漏磁场并非均匀分布,在铁轭部分相对集中,该区域的电磁线所受到机械力也较大;换位导线在换位处由于爬坡会改变力的传递方向,而产生扭矩;由于垫块弹性模量的因数,轴向垫块不等距分布,会使交变漏磁场所产生的交变力y时共振,这也是为什么处在铁心轭部、换位处、有调压分接的对应部位的线饼首先变形的根本原因。(注:单相每台设备的功率按照铭牌上面的d值计算,三相设备功率除以3,等于这台设备的每相功率。
3、抗短路能力计算时没有考虑温度对电磁线的抗弯和抗拉强度的影响。三相分调稳压器,其三相电每一相分开调节,在电机,控制板,调压器变压器,补偿变压器的成本上都会有较大增加。按常温下设计的抗短路能力不能反映实际运行情况,根据试验结果,电磁线的温度对其屈服极限0.2影响很大,随着电磁线的温度提高,其抗弯、抗拉强度及延伸率均下降,在250℃下抗弯抗拉强度要比在50℃时下降10%以上,延伸率则下降40%以上。而实际运行的变压器,在额定负荷下,绕组平均温度可达105℃,热点温度可达118℃。一般变压器运行时均有重合闸过程,因此如果短路点一时无法消失的话,将在非常短的时间内(0.8s)紧接着承受第二次短路冲击,但由于受第y次短路电流冲击后,绕组温度急剧增g,根据GBl094的规定,g允许250℃,这时绕组的抗短路能力己大幅度下降,这就是为什么变压器重合闸后发生短路事故居多。
4、采用普通换位导线,抗机械强度较差,在承受短路机械力时易出现变形、散股、露铜现象。其等电位点在图上重合为一点,任意两点之间的有向线段就表示两面三刀点间电势的相量,方向均由末端指向首端。采用普通换位导线时,由于电流大,换位爬坡陡,该部位会产生较大的扭矩,同时处在绕组二端的线饼,由于幅向和轴向漏磁场的共同作用,也会产生较大的扭矩,致使扭曲变形。如杨高500kV变压器的A相公共绕组共有71个换位,由于采用了较厚的普通换位导线,其中有66个换位有不同程度的变形。另外吴泾1l号主变,也是由于采用普通换位导线,在铁心轭部部位的高压绕组二端线饼均有不同翻转露线的现象。
5、采用软导线,也是造成变压器抗短路能力差的主要原因之一。由于早期对此认识不足,或绕线装备及工艺上的困难,制造厂均不愿使用半硬导线或设计时根本无这方面的要求,从发生故障的变压器来看均是软导线。
6、绕组绕制较松,换位或纠位爬坡处处理不当,过于单薄,造成电磁线悬空。从事故损坏位置来看,变形多见换位处,尤其是换位导线的换位处。
7、绕组线匝或导线之间未固化处理,抗短路能力差。早期经浸漆处理的绕组无一损坏。
8、绕组的预紧力控制不当造成普通换位导线的导线相互错位。
9、套装间隙过大,导致作用在电磁线上的支撑不够,这给变压器抗短路能力方面增加隐患。
10、作用在各绕组或各档预紧力不均匀,短路冲击时造成线饼的跳动,致使作用在电磁线上的弯应力过大而发生变形。
11、外部短路事故频繁,多次短路电流冲击后电动力的积累效应引起电磁线软化或内部相对位移,终导致绝缘击穿。
我国电力变压器行业发展前景适应市场需求
近年来,我国电力需求增长迅速,电网的高速建设和投资拉动了输变电设备的市场需求。庞大的电力建设资金给变压器行业带来了机遇和挑战,促使变压器行业得到了发展。
变压器市场规模增长动力强劲的因素有两方面,一方面,传统变压器的升级改造将催生很大的市场份额,落后产品的淘汰工作能够促进招工作的有效开展,巨大的经济效益将显现出来。同时,工频磁场与工频电场彼此又是互相独立的,有别于高频电磁场。另一方面,节能型、智能型变压器的研发、制造、销售、使用、维护将成为主流,全新产品必然为该产业带来全新的发展机遇。
实际上,变压器制造行业依赖于下游的电源、电网、冶金、石油化工、铁道、城市建设等行业的投资。变压器的主要技术参数有那些呢(1)额定容量:变压器在厂家额定电压、额定电流时连续运行所输送的容量。近年来受益于国民经济的发展,电源、电网的建设投入不断增大,输配电设备的市场需求明显增长,预计在较长时间内国内对变压器等输配电设备的市场需求仍将保持较高的水平。
在什么情况下应该使用控制变压器
一般来说,控制电压不应选大于220V,原因是随着工作电压的升高,控制导线之间存在的电容负载电流也就上升。如果控制电网的延伸距离较长,应用的常开触头线路会使接触器发生误接通,而常闭触头线路又会使接触器“打不开”。
随着电压的上升,接触器与继电器线圈所用的导线截面就减小,从而削弱了导线的机械强度与过载能力,发生故障的机遇也就增多。过载能力起着重要的作用,因为接触器磁系统的气隙随着时间的流逝而逐渐变大,或者由于外界异物侵入气隙,都会使保持电流。
随着电压的上升,爬电电流,即电阻性电流也就增大,考虑到接触器与继电器的外形尺寸通常都是十分紧凑,因此特别在有污染危险的场合,就会出现如充电电流过高而引起的类似故障。
在什么情况下应该使用控制变压器:
第y,电源的工作电压大于220V,或者电源的其他电压又不适用与控制目的。
第二,由于特殊原因,要求控制电压不同于电源电压,尤其是在使用控制用途的小电压时。
第三,不带中性线的电源。
第四,由于工作需要,必须使用完全对地绝缘的控制电源。
第五,在控制回路进出线上的对地电压各为相线间的电压一半值时(控制变压器次级绕组中心点接地)。
第六,在短路电流较高的电网(工业电网)中,为了减少短路容量(减少控制触头熔焊的危险)。
第七,需要在两相线之间连接控制回路的电网中,特别是在星形点位移的网络中,相线与中性线连接时会出现不同的控制电压。
(作者: 来源:)