列管式换热器结垢因素及解决方法
关闭列管式换热器一旦有结垢的产生会大大程度影响设备的传热效果,这样在生产上的经济损耗也是很大的。我们先来看看哪些原因会导致我们的列管式换热器结垢。
很多情况下,列管式换热器都是采用水位载热体的换热系统,水垢很容易就产生了,要想避免水垢的产生,我们可以在冷却水中加入聚磷酸盐类缓冲剂,一旦水中的PH值比较高时,水垢就可以
钢制管壳式换热器型号
列管式换热器结垢因素及解决方法
关闭列管式换热器一旦有结垢的产生会大大程度影响设备的传热效果,这样在生产上的经济损耗也是很大的。我们先来看看哪些原因会导致我们的列管式换热器结垢。
很多情况下,列管式换热器都是采用水位载热体的换热系统,水垢很容易就产生了,要想避免水垢的产生,我们可以在冷却水中加入聚磷酸盐类缓冲剂,一旦水中的PH值比较高时,水垢就可以析出。一般水垢初期比较容易去除,后期的水垢就很牢固难除。
列管式换热器结垢分:类析晶结垢、粒结垢、化学反应结垢、生物结垢、凝同结垢等等。
列管式换热器结垢后我们一般会采用机械清洗、化学清洗、超声波清洗等等,具体要看是哪些原因引起的结垢,针对结垢的具体原因进行解决。
管壳式换热器是由什么结构组成的?
关闭一般地,管壳式换热器制造容易,生产成本低,材料选用广,清洗方便,适应性强,处理量大,工作可靠,能够适应高温高压。虽然在结构紧凑、热传递和单位金属消耗方面不能与板翅式换热器进行比较,但由于上述优点,在化学工业、石油能源等行业的应用中仍占主导地位。下面是它所包含的结构的简要介绍。
管壳式换热器由壳体、传热管束、管板、折流板(折流板)和管箱组成.管壳换热器的壳体大多为圆柱形,装有管束,管束两端固定在管板上。有两种传热流体,一种是管内流体,另一种是管侧流体,另一种是管外流体,称为壳侧流体。为了提高管外流体的传热系数,通常在壳体内安装几个挡板。挡板可以提高壳体侧流体的速度,迫使流体按规定的距离多次通过管束,提高流体的湍流程度。换热管可按等边三角形或正方形布置在管板。等边三角形布置紧凑,管外流体湍流,传热系数大,方形布置便于管外清洗,适用于结垢流体。
FPR浮动盘管壳换热器的流体每次通过管束时称为单管侧,每次通过管束时称为单管侧。为了提高管内流体的流动速度,可以在管箱两端设置挡板,并将所有管分为几组。这样,流体一次只通过部分管道,因此在管束中来回流动多次,这被称为多管过程。同样,为了提高管的外部速度,还可以在壳体内安装纵向挡板,迫使流体多次通过壳体空间,称为多壳侧。多管多壳可结合使用。
管壳式换热器中管板强度设计
管板是管壳式换热器重要的受力元件之一,管板的设计合理与否直接关系到换热器的制造成本的高低及综合性能的优劣。管板的强度计算作为管板设计的关键一环,一直是许多相关部门的研究重点,管板强度的计算方法也在不断地发展和完善。
1975年以来,美国的ASME VIII-I尝试给出适合各种管板类型的设计规范,在1983年板中给出U形管式换热器的简支和整体结构的管板计算方法,在1992年版中又加入了固定式换热器管板计算方法。法国压力容器规范CODAP于1986年出版的非规定附录里,给出了包括U形管式、浮头式、固定式换热器的管板计算方法。
多年来,主要工业都已有自己的管板设计计算公式或规定,如英国的BS 5500标准、美国的TEMA、日本工业标准JIS、捷克压力容器计算准则、管板计算公式及TEMA修正计算公式、前苏联的锅炉监察手册及联邦德国的AD规范等。
随着欧洲统一市场的建立和欧元的**用,为促进承压设备在欧盟成员国内的自由贸易,2016年3月欧盟成员国正式表决通过了修改后的表尊EN13445,并于同年5月30日颁布了该标准版,并且要求,所有与此相抵触的欧盟成员国同类迟于2016年11月废弃。
对于管板的设计、EN13445中提出了两种方法,一种是传统方法,考虑内外压、几何尺寸等因素严格计算各种载荷状态引起的管板应力,并严格校核;另一种是极限分析方法,通过管板的极限分析,确定许用应力载荷。
(作者: 来源:)