隧道电缆敷设图
3.2 电缆刚性固定
工艺标准
两个相邻夹具间的电缆受自重、热胀冷缩所产生的轴向推力作用或电动力作用后,不发生任何玩去变形。
固定金具的数量需经过核算和验证,相邻夹具的间距L宜符合设计规程要求。
设计要点
电缆明敷时,应沿全长采用电缆支架、桥架、挂钩、或吊绳等支持与固定。
电缆支架和夹具应满足使用性、安全、耐久性的要求。
深圳220kv超高压电缆
隧道电缆敷设图
3.2 电缆刚性固定
工艺标准

两个相邻夹具间的电缆受自重、热胀冷缩所产生的轴向推力作用或电动力作用后,不发生任何玩去变形。
固定金具的数量需经过核算和验证,相邻夹具的间距L宜符合设计规程要求。
设计要点
电缆明敷时,应沿全长采用电缆支架、桥架、挂钩、或吊绳等支持与固定。
电缆支架和夹具应满足使用性、安全、耐久性的要求。
选用非磁性铝合金夹具隔断磁环路,以减少涡流和磁滞损耗导致的电缆局部发热。
施工要点
水平敷设时,在终端、接头或转弯处紧邻部位的电缆上,应设置不少于1处的刚性固定。
在垂直或斜坡的高位侧,宜设置不少于2处的刚性固定。
1. 设计电压
电缆及附件的设计必须满足额定电压、雷电冲击电压、操作冲击电压和系统蕞高电压的要求。其定义如下:
额定电压
额定电压是电缆及附件设计和电性试验用的基准电压,用U0/U表示。
U0——电缆及附件设计的导体和绝缘屏蔽之间的额定工频电压有效值,单位为kV;
U——电缆及附件设计的各相导体间的额定工频电

压有效值,单位为kV。
雷电冲击电压
UP——电缆及附件设计所需承受的雷电冲击电压的峰值,既基本绝缘水平BIL,单位为kV。
操作冲击电压
US——电缆及附件设计所需承受的操作冲击电压的峰值,单位为kV。
系统蕞高电压
Um——是在正常运行条件下任何时候和电网上任何点蕞高相间电压的有效值。它不包括由于故障条件和大负荷的突然切断而造成的电压暂时的变化,单位为kV。
定额电压参数见下表(点击放大)
330kV操作冲击电压的峰值为950kV;500kV操作冲击电压的峰值为1175kV。
2. 导体电阻
2.1导体直流电阻
单位长度电缆的导直流电阻用下式计算:
3.3 三相电缆的电鳡
主要计算中低压三相电缆三芯排列为“品”字形电缆。根据电磁场理论,三芯电缆工作电鳡为:
L=Li+2ln(2S/Dc) ×10-7
式中:
L——单位长度电鳡,H/m;
S——电缆中心间的距离,m;
若三芯电缆电缆中心间的距离不等距,或单芯三根品字时三相回路电缆的电鳡按下式计算:
S1、S2、S3——电缆各相中心之间的距离,m。
4. 电缆金属护套的电鳡
4.1三角
三根单芯电缆按等边三角形敷设的三相平衡负载交流回路,护套开路,每相单位长度电缆金属护套的电鳡为:
Ls=2ln(S/rs) ×10-7 ( H/m)
rs——电缆金属护套的平均半径,m。
4.2等距直线
三根单芯电缆按等距离平面敷设的三相平衡负载交流回路,护套开路,每相单位长度电缆金属护套的电鳡为:
对于中间B相:
LSB=2ln(S/rs) ×10-7 ( H/m)
对于A相:
LSA=2ln(S/rs) ×10-7 -α(2ln2 )×10-7 (H/m)
对于C相:
LSC=2ln(S/rs)×10-7 -α2(2ln2 )×10-7 (H/m)
三相平均值:
LS=2ln(S/rs)×10-7 +2/3ln2 ×10-7 (H/m)

(1)砖沟尺寸应按容纳的全部电缆确定。
(2)砖的抗压强度应根据路面情况确定。
(1)砌筑时上下层错缝,如需停歇时应留斜槎。
(2)转角处或交接处需同时砌筑。
(3)砌块龄期不应小于28天.
(4)浇筑前,混凝土应搅拌均匀,满足相关的技术标准。
(5)电缆沟墙体顶端应用钢筋混凝土圈梁结构。圈梁箍筋封闭弯钩在绑扎时应相互错开。
(6)混凝土应分层浇筑,振捣密实。并检查模板、垫块、管材等有无移位。压顶应分段浇筑混凝土。
(7)在采用插入式振捣时,混凝土分层浇筑时应注意振捣器的有效振捣深度。
(8)捣固时间应控制在25~40s,应使混凝土表面呈现浮浆和不再沉落。
(9)混凝土浇筑完毕后应加强养护,当混凝土达到设计强度的75%后方可拆除模板。
(10)做好成品的保护工作,防止污染和磕碰。
(11)抹灰前应充分湿润墙体,并贴灰饼充筋,保证抹面垂直度和平整度。
(12)抹灰完成24h后及时对抹灰面进行喷水养护,防止空鼓开裂。
(作者: 来源:)