分离纯化抗l体的目的。野l生型Protein A蛋白是金黄色葡l萄球菌细胞壁锚钉蛋白。三维空间上,抗l体FC端CH2-CH3区域与Protein A蛋白B结构域上两条反相平行的α螺旋结构相互结合。因此Protein A与抗l体分子特别是与IgG1、IgG2、IgG4有特异性结合,使得抗l体分子与发酵液中不具FC端结构的杂质如宿主蛋白与核酸等有效分离,进而达到纯化目的。Protein
Protein A亲和捕获
分离纯化抗
l体的目的。野
l生型Protein A蛋白是金黄色葡
l萄球菌细胞壁锚钉蛋白。三维空间上,抗
l体FC端CH2-CH3区域与Protein A蛋白B结构域上两条反相平行的α螺旋结构相互结合。因此Protein A与抗
l体分子特别是与IgG1、IgG2、IgG4有特异性结合,使得抗
l体分子与发酵液中不具FC端结构的杂质如宿主蛋白与核酸等有效分离,进而达到纯化目的。Protein A 亲和层析介质是通过把ProteinA 配基偶联到微球介质上制备而成的。因为Protein A配基与目标抗
l体的作用的专一性,因此亲和层析的分离纯化工艺和方法与抗
l体样品杂质含量和种类多少影响不大,使用Protein A 介质一步纯化目标抗
l体就可以达到95%以上纯度,回收率达到90%以上。亲和纯化效率也基本不受杂质多少影响,而其它分离模式如离子交换,疏水,分子筛等的分离工艺方法及效率大多取决于与目的蛋白同时存在的杂质种类和含量。因此,只要样品杂质不同,即使是纯化同样的目标生物分子,采用的分离工艺和方法就不同。以重组胰岛素分离纯化为例,不同厂家虽然生产的是同一目标胰岛素,但采用分离纯化方法完全不一样,主要原因就是每家生产的胰岛素杂质组成和含量不一样,因此需要不同的纯化工艺。而比胰岛素分子量更大,结构更复杂的抗
l体基本可以采用标准化的三步曲,主要原因就是Protein A 亲和介质的出现大大简化抗
l体的分离纯化工艺,但Protein A 价格昂贵让抗
l体生产厂家爱恨交加。
目前市场上主流Protein A产品是GE生产的以琼脂糖为基质的产品,也是早商业化的产品。琼脂糖为基质的Protein A 介质具有载量高,亲水性能好,非特异性吸附低等优点,但琼脂糖介质天然缺陷是机械强度差,因此也被称为软胶。由于该介质耐压性能差,生产中需要降低柱高、减小流速以防止压力过高造成柱床塌陷,限制了抗
l体批处理量及抗
l体生产效率。软胶Protein A 另外一个缺陷是传质速度慢,主要原因是软胶孔径较小,排阻大。因此软胶Protein A 都需要驻保留时间长,流速慢条件下,抗
l体吸附载量才会比较高,但在高流速下动态载量下降的非常快。因此一个理想的抗l体纯化用Protein A 介质需要具有高流速,高载量,高机械强度,及更长的使用寿命等特点。Protein A 介质载量是由微球孔径,比表面积,配基密度来决定的;机械强度则是由Protein A基球材料化学组成,交联度及孔隙率来决定的;Protein A 配基脱落及使用寿命主要由配基,基球性能及偶联方式来决定。实现Protein A 亲和介质的国产化需要从底层开始。
苏企10年研发神奇“粉末”,生物制药“卡脖子”难题!
下游分离纯化用层析介质
被列为35项科技“卡脖子”技术之一
今天,看苏州记者
在苏州企业纳微科技公司看到了
经过10年才研发出来的“粉末”。
神奇的“粉末”
用于生物制药中的分离纯化
它,改变了国内微球材料进口垄断局面!
单从外形来看,苏州纳微科技股份有限公司(以下简称“纳微科技”)研发的用于生物制药分离纯化的产品就像面粉一样,但在电子显微镜下,才能看到它的庐山真面目。
“这些非常有规则的小球就是微球,肉眼看这些微球不大,其实它的表面积非常大。如果将其摊开来看,每克甚至可以达到一个标准足球场那么大。”纳微科技市场总监林海春向看苏州记者介绍。
正是因为微球的表面积大,所以才具有极强的吸附性能,这一特性使得微球对某些物质具有特定的吸附能力,就可以把目标生物活性药l物从复杂体系中分离出来。
看苏州记者了解到,生物制药的生产