RV减速机和谐波减速器的原理和优劣势RV减速器和谐波减速器的原理和优劣势RV减速器:用于转矩大的机器人腿部腰部和肘部三个关节,负载大的工业机器人,一二三轴都是用RV。3、原动机、减速机的工作机构之间须仔细对中,误差不得大于所用联轴器的许用补偿。相比谐波减速机,RV减速机的关键在于加工工艺和装配工艺。RV减速机具有更高的疲劳强度、刚度和寿命,不像谐波传动那样随着使用时间增长,
纳博特斯克 帝人减速机
RV减速机和谐波减速器的原理和优劣势
RV减速器和谐波减速器的原理和优劣势
RV减速器:
用于转矩大的机器人腿部腰部和肘部三个关节,负载大的工业机器人,一二三轴都是用RV。3、原动机、减速机的工作机构之间须仔细对中,误差不得大于所用联轴器的许用补偿。相比谐波减速机,RV减速机的关键在于加工工艺和装配工艺。RV减速机具有更高的疲劳强度、刚度和寿命,不像谐波传动那样随着使用时间增长,运动精度会显著降低,其缺点是重量重,外形尺寸较大。
减速器之间是否存在取代关系
正方观点:
RV减速器较机器人中常用的谐波传动具有高得多的疲劳强度、刚度和寿命,而且回差精度稳定,不像谐波传动那样随着使用时间增长运动精度就会显著降低。工业机器人成本结构大致如下:本体22%、伺服系统25%、减速器38%、控制系统10%以及其他5%。所以许多的机器人传动多采用RV减速器,因此,RV减速器在机器人传动中有逐渐取代谐波减速器的发展趋势。
这些产品在某些型号上确实存在替代关系,但这几类减速器只能实现部分替代。所以许多的机器人传动多采用RV减速器,因此,RV减速器在机器人传动中有逐渐取代谐波减速器的发展趋势。绝大部分情况下,各类减速器很难实现替换,比如在速比方面,谐波和RV的速比都要远远大于行星,所以小速比领域是行星的天下。当然行星的速比是可以做大的,但是很难去替换谐波和RV。又比如刚性方面,行星和RV的刚性要好于谐波,在体现刚性的使用工况下,谐波很难有好的表现。
输出机构(即行星架)6由装在其上的三对曲柄轴支撑轴承来推动
输出机构(即行星架)6由装在其上的三对曲柄轴支撑轴承来推动,把摆线轮上的自转矢量以1:1的速比传递出来。
(1)传动;
(2)传递同样转矩与功率时的体积小(或者说单位体积的承载能力小),RV减速器由于用了三个行星轮,特别是级,摆线针轮为硬齿面多齿啮合,这本身就决定了它可以用小的体积传递大的转矩,又加上在结构设计中,让传动机构置于行星架的支承主轴承内,使轴向尺寸大大缩小,所有上述因素使传动总体积大为减小。谐波减速器:用于负载小的工业机器人或大型机器人末端几个轴,谐波减速器是谐波传动装置的一种,谐波传动装置包括谐波和谐波减速器。
(3)传动比范围大;
(4)只要设计合理,制造装配精度保证,就可获得和小间隙回差;
(5)扭转刚度大,输出机构即为两端支承的行星架,用行星架左端的刚性大圆盘输出,大圆盘与工作机构用螺栓联结,其扭转刚度远大于一般摆线针轮行星减速器的输出机构。在额定转矩下,弹性回差小;
RV减速器是由摆线针轮和行星支架组成以其体积小,抗冲击力强,扭矩大,定位精度高,振动小,减速比大等诸多优点被广泛应用于工业机器人,机床,检测设备,系统等领域。

RV减速器用于大扭矩机器人腿、腰、肘三个关节
RV减速器用于大扭矩机器人腿、腰、肘三个关节。RV减速器刚性好、抗冲击能力强、传动平稳、精度高,适合中、重载荷的应用,但RV减速器需要传递很大的扭矩,承受很大的过载冲击,保证预期的工作寿命,因而在设计上使用了相对复杂的过定位结构,制造工艺和成本控制难度较大。对于大负载的工业机器人,RV用于一轴、二轴和三轴。与谐波减速器相比,RV减速器的关键在于加工工艺和装配工艺。RV减速器具有较高的疲劳强度、刚度和寿命,与谐波传动不同,随着使用时间的增加,运动精度会显著降低,其缺点是重量大、尺寸大。
减速机的原理
蜗杆减速机是一种动力传达机构,利用齿轮的速度转换器,将电机(马达)的回转数减速到所要的回转数,并得到较大转矩的机构。此外,伺服电机在低频运转下容易发热和出现低频振动,对于长时间和周期性工作的工业机器人这都不利于确保其、可靠地运行。在用于传递动力与运动的机构中,减速机的应用范围相当广泛。在各式机械的传动系统中都可以见到它的踪迹,从交通工具的船舶、汽车、机车,建筑用的重型机具,机械工业所用的加工机具及自动化生产设备,到日常生活中常见的家电,钟表等等。其应用从大动力的传输工作,到小负荷,的角度传输都可以见到减速机的应用,且在工业应用上,减速机具有减速及增加转矩功能。因此广泛应用在速度与扭矩的转换设备。在蜗轮蜗杆减速器输入端加装一个斜齿轮减速器,构成的多级减速器可获得非常低的输出速度,是斜齿轮级和蜗齿级的组合,比纯单级蜗轮减速机具有更高的效率。而且振动小、噪音低、能耗低。

(作者: 来源:)