封装焊点热疲劳失效
许多集成电路传统上使用不含铅的焊点凸点作为与其它管芯、封装、甚至印刷电路板(PCB)的连接。相邻层中不同的热膨胀系数和温度会使材料产生不同的膨胀和收缩。十分关注这一问题,制定了多项有利政策支持封装测试设备的发展。这些热机械力,振动、机械冲击等,会对焊点造成应变,并可能导致焊点和互连表面的裂纹。近,铜柱变得流行起来,因为它们的焊点间距更小。然而,
封装测试厂家
封装焊点热疲劳失效
许多集成电路传统上使用不含铅的焊点凸点作为与其它管芯、封装、甚至印刷电路板(PCB)的连接。相邻层中不同的热膨胀系数和温度会使材料产生不同的膨胀和收缩。十分关注这一问题,制定了多项有利政策支持封装测试设备的发展。这些热机械力,振动、机械冲击等,会对焊点造成应变,并可能导致焊点和互连表面的裂纹。近,铜柱变得流行起来,因为它们的焊点间距更小。然而,这些相互连接的刚性更强,根据施加的应变,可能会更快地失效。
微通孔分离
随着电子器件中的间距越来越小,微通孔技术在PCB中的应用呈式增长。微孔堆叠多达三或四层高已经变得非常普遍。所涉及的原因很多,例如晶圆切割工序未经优化,密封环结构缺陷(密封环是指裸片四周的金属花纹,起到机械和化学防护作用)。然而,如果这些设计没有使用正确的材料和几何形状,微孔可能会经历意想不到的开裂和分层。热-机械应力、水分、振动和其他应力会导致微孔的分离,以及与电镀通孔(PTH)顶部或底部的铜迹线的分层。Sherlock分析这些问题区域,会考虑回流和/或操作过程中的超应力条件,并可以预测疲劳何时会导致过孔或贯穿孔、通孔、路由层和凸点下金属层(UBM)接点之间的互连故障。
WLCSP此封装不同于传统的先切割晶圆,再组装测试的做法,而是先在整片晶圆上进行封装和测试,然后再切割。半导体器件有许多封装形式,按封装的外形、尺寸、结构分类可分为引脚插入型、表面贴装型和封装三类。5mm焊区中心距,208根I/O引脚的QFP封装的CPU为例,外形尺寸28×28mm,芯片尺寸10×10mm,则芯片面积/封装=10×10/28×28=1:7。从DIP、SOP、QFP、PGA、BGA到CSP再到SIP,技术指标一代比一代。表面贴片封装根据引脚所处的位置可分为:Single-ended(引脚在一面)、Dual(引脚在两边)、Quad(引脚在四边)、Bottom(引脚在下面)、BGA(引脚排成矩阵结构)及其他。
在TSOP封装方式中,内存颗粒是通过芯片引脚焊在PCB板上的,焊点和PCB板的接触面积较小,使得芯片向PCB板传热相对困难。而且TSOP封装方式的内存在超过150MHz后,会有很大的信号干扰和电磁干扰。SIL(SingleIn-line):单列直插式封装,引脚从封装一个侧面引出,排列成一条直线。WLCSP此封装不同于传统的先切割晶圆,再组装测试的做法,而是先在整片晶圆上进行封装和测试,然后再切割。几年之前封装本体面积与芯片面积之比通常都是几倍到几十倍,但近几年来有些公司在BGA、TSOP的基础上加以改进而使得封装本体面积与芯片面积之比逐步减小到接近1的水平,所以就在原来的封装名称下冠以芯片级封装以用来区别以前的封装。

(作者: 来源:)