变频技术的发展历程
变频技术诞生背景是交流电机无级调速的广泛需求。传统的直流调速技术因体积大故障率高而应用受限。 20世纪60年代以后,电力电子器件普遍应用了晶闸管及其升级产品。但其调速性能远远无法满足需要。从20世纪70年代,脉宽调制变压变频(PWM-VVVF)调速的研究得到突破,20世纪80年代以后微处理器技术的完善使得各种优化算法得以容易的实现。20世纪80年代中后期,美、日、德、
丹佛斯高压变频器
变频技术的发展历程
变频技术诞生背景是交流电机无级调速的广泛需求。传统的直流调速技术因体积大故障率高而应用受限。 20世纪60年代以后,电力电子器件普遍应用了晶闸管及其升级产品。但其调速性能远远无法满足需要。从20世纪70年代,脉宽调制变压变频(PWM-VVVF)调速的研究得到突破,20世纪80年代以后微处理器技术的完善使得各种优化算法得以容易的实现。20世纪80年代中后期,美、日、德、英等发达的 VVVF变频器技术实用化,商品投入市场,得到了广泛应用。步入21世纪后,国产变频器逐步崛起,现已逐渐抢占市场。上海和深圳成为国产变频器发展的前沿阵地。
变频器直接转矩控制方式
在1985年,德国鲁尔大学的DePenbrock提出了直接转矩控制变频技术。该技术在很大程度上解决了上述矢量控制的不足,并以新颖的控制思想、简洁明了的系统结构、优良的动静态性能得到了迅速发展。该技术已成功地应用在电力机车牵引的大功率交流传动上。 直接转矩控制直接在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩。
变频器自身及需要控制的电机
电机的极数。一般电机极数以不多于(极为宜,否则变频器容量就要适当加大。转矩特性、临界转矩、加速转矩。在同等电机功率情况下,相对于高过载转矩模式,变频器规格可以降额选取。电磁兼容性。为减少主电源干扰,使用时可在中间电路或变频器输入电路中增加电抗器,或安装前置隔离变压器。一般当电机与变频器距离超过50m时,应在它们中间串入电抗器、滤波器或采用屏蔽防护电缆。
变频器适应新能源
现在以太阳能和风力为能源的燃料电池以其低廉的价格崭露头角,有后来居上之势。这些发电设备的特点是容量小而分散,将来的变频器就要适应这样的新能源,既要有效,又要低耗。现在电力电子技术、微电子技术和现代控制技术以惊人的速度向前发展,变频调速传动技术也随之取得了日新月异的进步,这种进步集中体现在交流调速装置的大容量化、变频器的性能化和多功能化、结构的小型化等方面。
(作者: 来源:)