将电化学设备处理后的废水从脉冲厌氧反应设备的进水管导入到反应室底部,废水由底部向动进入流化反应区与颗粒污泥混合,使得大部分有机物反应降解,并产生大量沼气,液相上升流速较快,沼气随液相上升到分离器处汇集。混合流体中密度较小的液相则通过分离器与反应室之间的间隙进入到深度净化区,液相在深度净化区内进一步发生生物反应,产生沼气的同时形成液相上升流速,沼气随液相上升到上部,被分离器收集后由气
高难度制药废水处理设备
将电化学设备处理后的废水从脉冲厌氧反应设备的进水管导入到反应室底部,废水由底部向动进入流化反应区与颗粒污泥混合,使得大部分有机物反应降解,并产生大量沼气,液相上升流速较快,沼气随液相上升到分离器处汇集。混合流体中密度较小的液相则通过分离器与反应室之间的间隙进入到深度净化区,液相在深度净化区内进一步发生生物反应,产生沼气的同时形成液相上升流速,沼气随液相上升到上部,被分离器收集后由气流管道导入沼气收集器内。待处理的废水被收集到收集池内,在收集池内静置12-36小时,在收集池内添加有用于杀菌消毒的石灰,将静置后的待处理废水从上部溢流口溢出后导入到预处理池内。
下

脉冲厌氧反应设备处理后的废水从出水管导入到生物倍增设备,在生物倍增设备中通过控制溶解氧和污泥沉降比同步反硝化降磷脱氮,使得生物处理载体中所驯化培养的微生物数量极大化、菌群特殊化、降解化,从而有效降解废水中的有机污染物达到生物平衡。生物倍增设备处理后的废水导入到二次电化学设备内,通过PAC加药装置定时定量向二次电化学设备内添加化学药剂,接通二次电化学设备内极板的低电压高电流,在极板之间产生电场,待处理废水在极板间发生电絮凝反应。在厌氧过程中,生成相为厌氧阶段的速度控制步骤(瓶颈),所以一定浓度的SO42-存在会使厌氧阶段BOD的去除失去功效,从而导致系统恶化,放流水无法达标。

稀释会使投资和运行成本均大量成倍增长,且浪费了水资源。制药废水、糖精废水、某些染料废水均由于高Cl-含量使常规生化处理系统无法正常运行。通常人们认为BOD/COD<0.3的废水为难以生化。延长停留时间,改变微生物的生长条件是可以收到一些效果,但大量的电力消耗,使企业苦不堪言。由于长期不加治理,大量的污染物沉积在河流、湖泊底部,导致河流、湖泊底泥淤积。底泥中的还原性物质产生大量的化学耗氧使河流、湖泊底泥形成厌氧环境,在厌氧微生物作用下逐步腐化,变黑、发臭。

(作者: 来源:)