蛋白结晶板发展 
	获得晶体及提高晶体质量是蛋白质结晶方法学中的两大基本问题.为解决这两个问题,结构生物学家已发展了许多方法,其中针对蛋白质本身进行分子改造是非常重要的方法之一.通过蛋白质工程技术,如突变,还原化修饰,剪切或删除构象柔性环区,融合蛋白,复合物共结晶,原位蛋白质水解等方法对蛋白质本身进行分子改造,可明显提高其结晶成功率及晶体质量.随着该方面成功案例的不断积累,
蛋白结晶板报价
	蛋白结晶板发展 
	获得晶体及提高晶体质量是蛋白质结晶方法学中的两大基本问题.为解决这两个问题,结构生物学家已发展了许多方法,其中针对蛋白质本身进行分子改造是非常重要的方法之一.通过蛋白质工程技术,如突变,还原化修饰,剪切或删除构象柔性环区,融合蛋白,复合物共结晶,原位蛋白质水解等方法对蛋白质本身进行分子改造,可明显提高其结晶成功率及晶体质量.随着该方面成功案例的不断积累,分子改造技术越来越凸显出其在蛋白质结构解析中的重要作用,特别是对一些难以结晶或提高晶体质量的蛋白质而言,其应用价值更不可忽视.针对近年来分子改造技术在蛋白质结晶中的应用进行了回顾与总结,并展望了其未来的发展。
	
	
 
	
	蛋白质晶体板结构
	研究蛋白质晶体结构及其性质的晶体学分支学科。蛋白质是由众多的α-氨基酸作为单体缩合而成的多肽链通过交联构成的。多肽链的氨基酸及其交联位置代表蛋白质分子的一级结构,而多肽链按一定方式在空间分布则形成二级结构(如α-螺旋和早折叠片等)和三级立体结构(如多肽链折叠为球形),作为亚基的三级结构还可聚集成四级结构等。
	
		
	
	蛋白质晶体板介绍使用
	通过红外光谱,扫描电镜,X射线衍射对产物的晶型,形貌及物相进行了详细表征,初步探讨了文石晶体形成机理及生长机理。本文研究的主要内容及所获得的结论如下:1.常温常压下,以竹蛏韧带纤维状蛋白质为基底,采用气体扩散法可以在较大的条件范围内合成出纯文石晶体:即稀硫酸浓度0.1mol-L-1,NH4HCO3粉末19.0g,CaCl2浓度0.9-9.0mmol·L-1,溶液高度10-30mm,反应温度20-30℃,结晶时间3-12小时。而空白对照(以玻璃盖玻片为基底)制备出的晶体主要为菱形方解石,还有少量文石和球文石。
	
	蛋白质晶体板使用 
	合成出具有自组装结构的金微球;利用牛白蛋白作为模板,在水相条件下,合成出具有介孔结构的不同形貌的银微球.这些通过生物仿生方法得到的微纳米结构复合材料具有易于修饰的表面官能团,良好的生物相容性,出色的表面增强拉曼效应,提高的电化学导电特性和波长可调的光致发光效应等等,在构建纳米生物传感器,光学器件,表面增强拉曼底物和材料,催化剂等领域有着广泛的应用前景。
	
	
(作者: 来源:)