空气冷却器翅片管强化传热新途径简介 对空气冷却器翅片管强化传热新途径作了阐述,介绍了各种新型翅片管的结构形式、制造工艺和传热性能。同时,将具有代表性的新型翅片管的传热和摩擦阻力性能与传统的平直翅片管进行了比较,给出了相应的传热系数曲线、流动阻力系数曲线和实验公式。研究表明,空气冷却器翅片管经过强化传热改造后,传热提高。指出在制造和选择新型空气冷却器翅片管时,需要考虑综合因素。
蒸汽盘管供应商
空气冷却器翅片管强化传热新途径简介
对空气冷却器翅片管强化传热新途径作了阐述,介绍了各种新型翅片管的结构形式、制造工艺和传热性能。同时,将具有代表性的新型翅片管的传热和摩擦阻力性能与传统的平直翅片管进行了比较,给出了相应的传热系数曲线、流动阻力系数曲线和实验公式。研究表明,空气冷却器翅片管经过强化传热改造后,传热提高。指出在制造和选择新型空气冷却器翅片管时,需要考虑综合因素。
在许多工业过程中,大量的热量需要通过冷却系统来交换。过去基本上用水作冷却剂,随着工业的发展,冷却水的需求量急剧增加,从而导致冷却水源日益短缺,并造成环境污染。空气冷却技术是20世纪40年代发展起来的用空气来冷却管内工艺流体的一种技术。虽然应用空气作为冷却剂性能要差一些,但只要选用合适的空气冷却器,利用取之不尽的空气作为冷却介质,较之水冷却器是一种显著的节能设备,同时也避免了比较敏感的水源污染和破坏生态平衡等问题。

散热在地理管换热器换热方面的改进研究
地埋管吸热时,其换热过程与排热相反,随着埋管周围土壤水分的增加,潜热的换热量增加,埋管周围土壤的导热系数增大,冬季地埋管吸热的换热效果要好于夏季地埋管排热的换热效果。此外,地埋管自身的换热量除了取决于其换热热阻也取决于地源热泵机组运行工况,地埋管的排/吸热量计算式:地埋管排热量=COP+1COP@建筑空调负荷,埋管吸热量=COP-1COP@建筑空调负荷,可以看出随着地埋管换热的持续,其换热热阻增加,地埋管的进出口水温温差减少,出口水温在夏季工况时升高,冬季工况时下降,这都导致机组的制冷/制热效率下降。夏季机组效率下降,可以看出,夏季随着机组效率的降低需要地埋管的排热量反而增加,这将导致地埋管换热效果的持续恶化;可以看出机组冬季效率下降将导致地埋管的吸热量的减少,这点与夏季地埋管的排热工况正好相反,结果是地埋管吸热量减少,埋管周围换热区域的岩土能够有一定的时间恢复从而提高地埋管的换热系数,这种情况相当于冬季地埋管的换热情况是能够有一定自身调节的能力,而夏季地埋管的换热是随着排热持续进行而加速恶化。所以,对于地埋管的夏季排热工况,一定要通过辅助散热装置比如冷却塔来帮助地埋管换热效果改善,冷却塔辅助散热不仅仅是平衡地埋管冬、夏季的换热量,也是改善夏季地埋管换热效果,缓解夏季地埋管周围换热区域岩土热堆积的有效方法。地埋管换热器冬、夏季吸/排热和有辅助散热装置下的地埋管换热器的换热机理。

热管问题在热管换热器应用中分析
热管换热器的核心元件是热管。热管是一种新型相变传热元件,其的传热特性引起了人们的极大兴趣,应用领域从空间扩大到地面,从工业扩展到民用。然而,在热管技术蓬勃发展的今天,其在工业应用中仍然存在一些问题,会限制热管技术的使用和深入发展。笔者对这些问题进行了研究,并提出了合理的解 早期的热管研究人员就注意到了管壳材料与工质的化学相容性问题,早期工业应用的热管一般采用铜材管壁或钢铜复合管,产品成本很高,限制了热管技术在工业上的广泛应用。钢 水热管以其成本低、强度高、制造工艺简单及适应温度范围广得到了大家的认同,在工业上得到广泛的应用,然而钢 水热管的使用寿命不足0.5a,无法满足工业应用的要求。通过多年的研究人们认识到,钢 水热管中存在着化学反应和电化学反应,这是一种不可避免也不可能消除的金属腐蚀过程,只能抑制或延缓,因此,钢 水热管相容性问题的对策只能是延长热管的使用寿命。

冷却空气分配对空冷凝汽器单排翅片管换热性能的影响
直接空冷技术以其优越的节水性能,为富煤贫水地区火电厂的建设提供了一条可靠途径。直接空冷凝汽器换热的核心元件是单排翅片管。近年来,对空冷单排翅片管的研究取得了一定的进展。杜小泽等利用直接空冷凝汽器单体性能实验台进行实验研究,得到了单排管翅片侧无量纲努赛尔数随空气流动雷诺数的变化关系,拟合出相应的准则关联式。徐艳对单排翅片管进行了流动换热性能实验研究,发现随着雷诺数增加,翅片管空气侧换热性能增强。胡汉波等对单排翅片管进行数值模拟,结合实验数据得出了翅片管流动阻力和传热准则关联式。杨立军等对翅片管空气侧流场、温度场进行数值模拟,得到了管束夹角对流动换热性能的影响。张凯峰等对单排翅片管进行数值模拟,发现对每个迎面风速均存在1个佳翅片间距,翅片高度增加导致对流换热系数和摩擦系数减少。

(作者: 来源:)