水解可定义为复杂的非溶解性的聚合物被转化成简单的溶解性单体和二聚体的过程。水解反应针对不同的废水类型差别很大,这要取决于胞外酶能否有效的接触到底物。因此,大的颗粒比小颗粒底物要难降解很多,比如造纸废水、印染废水和制药废水的木质素、大分子纤维素就很难水解。
水解速度的可由以下动力学方程加以描述:
ρ=ρo/(1+Kh.T)
ρ --可降解的非溶解性底物浓度(g/
化工厌氧过滤罐厂家
水解可定义为复杂的非溶解性的聚合物被转化成简单的溶解性单体和二聚体的过程。水解反应针对不同的废水类型差别很大,这要取决于胞外酶能否有效的接触到底物。因此,大的颗粒比小颗粒底物要难降解很多,比如造纸废水、印染废水和制药废水的木质素、大分子纤维素就很难水解。
水解速度的可由以下动力学方程加以描述:
ρ=ρo/(1+Kh.T)
ρ --可降解的非溶解性底物浓度(g/l);
ρo---非溶解性底物的初始浓度(g/l);
Kh--水解常数(d-1);
T--停留时间(d)。
一般来说,影响Kh的因素很多,很难确定一个特定的方程来求解Kh,但我们可以根据一些特定条件的Kh,反推导出水解反应器的容积和反应条件。在实际工程实施中,有条件的话,针对要处理的废水作一些Kh的测试工作。通过对国内外一些报道的研究,提出在低温下水解对脂肪和蛋白质的降解速率非常慢,这个时候,可以不考虑厌氧处理方式。对于生活污水来说,在温度15的情况下,Kh=0.2左右。但在水解阶段我们不需要过多的COD去除效果,而且在一个反应器中你很难严格的把厌氧反应的几个阶段区分开来,一旦停留时间过长,对工程的经济性就不太实用。如果就单独的水解反应针对生活污水来说,COD可以控制到0.1的去除效果就可以了。
把这些参数和给定的条件代入到水解动力学方程中,可以得到停留水解停留时间:
T=13.44h
这对于水解和后续阶段处于一个反应器中厌氧处理单元来说是一个很短的时间,在实际工程中也完全可以实现。如果有条件的地方我们可以适当提高废水的反应温度,这样反应时间还会大大缩短。而且一般对于城市污水来说,长的排水管网和废水中本生的生物多样性,所以当废水流到废水处理场时,这个过程也在很大程度上完成,到目前为止还没有看到关于水解作为生活污水厌氧反应的限速报道。
化工厌氧过滤罐厂家

以生活污水为例,一般来说影响废水厌氧反应速率的因素有很多,包括反应温度、废水的毒性、原水基质浓度、原水的PH值、传质效率、营养物质的平衡、微量元素的催化作用等等。对于生活污水来说,影响比较大的因素有反应温度、原水的基质浓度、传质效率以及微量元素的催化。因为生活污水的营养比和PH值被公认为非常适合生物的生长的。在前面的叙述中,已经提及了厌氧反应的个阶段对于生活污水来说,很快就可以完成,尤其水解阶段,不存在传质的限制,同时通常长距离的管网也给水解提供了足够的时间。因此我们提出的厌氧处理低浓度废水设计思想中,主要考虑产CH4过程作为限速步骤。
由于产CH4阶段遵循莫诺方程,整个速率的确定以莫诺方程为基础。在上式中,很难把总体反应的Ks值估算出来,因为它受到的影响因素很多,对于不同类型的废水差别很大。对于生活污水来说可以根据不同的单个因素影响列成很多分式莫诺方程,末后各式相乘再加上修正系数,这个方程可以得出比较接近的Ks值,作为厌氧处理生活污水时的参考设计数据。
IC 反应器的构造及其工作原理决定了其在控制厌氧处理影响因素方面比其它反应器更具有优势。
(1)容积负荷高:IC反应器内污泥浓度高,微生物量大,且存在内循环,传质效果好,进水有机负荷可超过普通厌氧反应器的3倍以上。
(2)节省投资和占地面积:IC 反应器容积负荷率高出普通UASB 反应器3倍左右,其体积相当于普通反应器的1/4-1/3 左右,大大降低了反应器的基建投资;而且IC反应器高径比很大(一般为4-8),所以占地面积少。
(3)抗冲击负荷能力强:处理低浓度废水(COD=2000-3000mg/L)时,反应器内循环流量可达进水量的2-3 倍;处理高浓度废水(COD=10000-15000mg/L)时,内循环流量可达进水量的10-20倍。大量的循环水和进水充分混合,使原水中的有害物质得到充分稀释,大大降低了毒物对厌氧消化过程的影响。
(4)抗低温能力强:温度对厌氧消化的影响主要是对消化速率的影响。IC反应器由于含有大量的微生物,温度对厌氧消化的影响变得不再显著和严重。通常IC反应器厌氧消化可在常温条件(20-25 ℃)下进行,这样减少了消化保温的困难,节省了能量。
-->