智能交通
车牌识别框架流程与应用分析车牌识别是利用车辆的动态视频或静态图像进行车牌号码、车牌颜色自动识别的模式识别技术。技术的核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。该技术常用于停车场及小区出入口、高速公路收费站、公路卡口和城市交通。
现在,随着人们安防意识的提高,对安防力度的投入加大,车牌识别产品的应用也将越来越普遍化。而一体化、智能化、高清必
车牌识别系统价格
智能交通
车牌识别框架流程与应用分析车牌识别是利用车辆的动态视频或静态图像进行车牌号码、车牌颜色自动识别的模式识别技术。技术的核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。该技术常用于停车场及小区出入口、高速公路收费站、公路卡口和城市交通。
现在,随着人们安防意识的提高,对安防力度的投入加大,车牌识别产品的应用也将越来越普遍化。而一体化、智能化、高清必将成为车牌识别系统发展的主流方向。

车牌识别字符分割
字符分割的任务是把多列或多行字符图像中的每个字符从整个图像中切割出来成为单个字符图像。传统字符分割算法可以归纳为以下两类类:直接分割法、基于图像形态学的分割法。车牌字符的正确分割对字符的识别是很关键的,在分割正确的情况下,才能保证识别的准确率。而随着神经网络理论的不断发展,端到端的图片分类识别技术也有很大突破,因此很多OCR软件逐步摆脱传统字符分割处理,由识别网络对多字符进行直接识别。

车牌识别技术的介绍
在现阶段,车牌识别已经有很多产品出来了,比如说停车场车牌自动识别,这些大多数都是针对固定角度,目前针对复杂环境下的车牌识别,识别还有待提高,这些复杂环境主要是指:灯光条件,扭曲的车牌,还有泥土遮挡的车牌。车牌识别技术可以分类三个部分,车牌定位, 字符分割 ,车牌识别。由于字符分割在一定程度下会影响识别率,近就有一些人提出免分割的车牌识别,将车牌识别分割成两个部分,车牌定位,车牌识别。
车牌切分模块
车牌切分模块利用车牌文字的灰度、颜色、边缘分布等各种特征,能较好地抑制车牌周围其他噪声的影响,并能容忍一定倾斜角度的车牌。
车牌识别模块
在车牌识别模块中,采用了多种识别模型相结合的方法,构建了一种层次化的字符识别流程,有效地提高了字符识别的正确率。另一方面,在字符识别之前,使用计算机智能算法对字符图像进行了前期处理,不仅保留了图像信息,而且提高了图像质量和相似字符的可区分性,保证了字符识别的可靠性。

(作者: 来源:)