目前各国使用的汽车用面漆,均以树脂、聚酯树脂为主,鉴于客车涂料特有的要求,国内外均采用聚氨酯汽车面漆。它兼有涂料和聚氨酯涂料各自的优点,是客车涂料的涂料品种。其特点如下:
(1)汽车用涂料的特点
a.耐候性优良,保光保色性好,在紫外光的照射下不易发生断链,分解或氧化等化学变化。漆膜不黄变,其颜色和光泽可以长期保持恒定;
b.树脂是无色透明,所以制得的清漆漆膜完
环保阴极电泳漆厂家
目前各国使用的汽车用面漆,均以树脂、聚酯树脂为主,鉴于客车涂料特有的要求,国内外均采用聚氨酯汽车面漆。它兼有涂料和聚氨酯涂料各自的优点,是客车涂料的涂料品种。其特点如下:
(1)汽车用涂料的特点
a.耐候性优良,保光保色性好,在紫外光的照射下不易发生断链,分解或氧化等化学变化。漆膜不黄变,其颜色和光泽可以长期保持恒定;
b.树脂是无色透明,所以制得的清漆漆膜完全透明无色。制造浅色漆是色泽鲜艳,能制得纯白色漆膜;
c→.可制得中性涂料,与铝银浆、珠光颜料等无反应,因而能制得色泽非常鲜艳的金属闪光漆,且耐候性特别优异;
d.耐化学品性好,可耐一般的酸、碱、醇、和机油;
e.耐热性、耐寒性和耐温变性优良;
f.优良的机械性能和附着力,漆膜坚硬;
g.具有优良的抛光性能,能制得平整光滑、清晰光亮的漆膜外观。因而涂料是一种优良的装饰性涂料。
国外汽车用金属闪光漆几乎都采用树脂体系,美国通用、福特和克莱斯勒三家汽车公司及其国外分公司所采用的汽车面漆也是以树脂为主。
(2)汽车用聚氨酯涂料的特点
a.硬度高,具有机械性和韧性;
b.兼有保护和装饰性;
c.漆膜附着力强,对多种物面均有优良的附着力;
d.漆膜具有弹性,而且可调;
e.漆膜具有优良的耐化学品性,耐酸碱性,能低温固化,节省能源;
f.光泽度高,耐候性好,漆膜耐温变性好,可与许多树脂混溶,制成各种改来哦,大幅度提高和改进涂料的性能。
综上所述,聚氨酯涂料正是综合了树脂涂料和聚氨酯涂料的各自优点,以满足汽车涂料的要求。
汽车涂装工艺的特点和侧重点:
汽车涂装工艺根据汽车类型的不同而各有特点和侧重点。
载重汽车的主要涂装件是前部驾驶室,涂装要求;其他部件如车厢、车架等涂装要求比驾驶室低。
客车的涂装与载货汽车的涂装有较大区别。客车车身包括大梁、骨架、车厢内部、车身外表面,其中以车身外表面要求较高。车身外表面不但要求具有良好的保护性和装饰性,而且喷涂面积大、平面多,有两种以上的颜色,有时还有汽车色带。因此,施工周期比载货汽车长,施工要求比载货汽车高,施工过程比载货汽车复杂。
轿车和小型旅行车,不论在表面装饰性或底层保护性都比大型客车和载货汽车的要求高。它的表面涂层属于一级装饰精度,具有美丽的外观,光亮如镜或光滑的表面,无细微的杂质、擦伤、裂纹、起皱、起泡及肉眼可见的缺陷,并应有足够的机械强度。
底面涂层属于优良保护层,应有优良的防锈性和防腐蚀性,很强的附着力;局部或全部刮涂附着力好、机械强度高的腻子,使用数年也不会出现锈蚀或脱落等现象。
客车车身骨架电泳工艺孔设计
从1963 年电泳漆在轿车车身上试验成功至今。阴极电泳涂装技术以其泳透力好,涂膜外观平滑,膜厚均一,耐腐蚀性能优异,适合流水线生产,可以完全实现自动化,涂料利用率高,公害低等优点,被广泛运用于汽车车身。
随着客车行业涂装技术的进步,运输业对客车产品耐腐蚀性能要求越来越高。具备一定生产规模的客车生产企业已经开始使用和筹划客车整车阴极电泳工艺。但用于客车车身的整车电泳还为数不多,其中一个主要原因是由于客车的车身骨架与轿车全薄壳冲压车身的结构不同,几乎均为采用异型钢管的腔式结构,在进行整车阴极电泳时,骨架内腔难以泳上漆膜。因此在进行客车整车电泳时,电泳液能否顺利进入车身钢管内腔,电力线是否能顺利到达管内腔,异型钢管内部能否泳上底漆,以及在前处理和电泳时液体如何排出等,这些都是客车整车电泳得以实施的关键,因此要求工艺设计人员在车身设计时必须在钢管上合理设计工艺孔。
电泳工艺孔按功能分为三类:排液孔、排气孔、防电磁屏蔽孔。
1.1 排液孔
排液孔开制于零件拼装到整车后的位置,用以排出零件内腔的液体,防止在电泳生产线不同工序间产生窜液及零件内腔无法排出的积液。
1.2 排气孔
开制于零件拼装到整车后的位置,作用为浸槽时排出零件内腔的气体,防止形成气腔;在出槽时保证零件内腔与外界大气相通,顺利、地排液。
1.3 防电磁屏蔽孔
车身骨架、底盘车架总成中,对存在完全封闭或部分封闭腔体结构的零件,均需要设计电泳工艺孔。零件上的电泳工艺孔一般会存在一个孔同时具备几种功能的情况,如所有工艺孔兼具防电磁屏蔽的功能,而部分防电磁屏蔽孔又承担排气孔的功能;工艺孔设置合理与否是确保进入骨架内腔的液体能否及时流出、不产生串槽,确保电泳槽液稳定、提高电泳漆泳透力、满足内腔涂膜性能的关键因素。工艺孔开制不能影响车身骨架和底盘车架结构可靠性。
汽车轻量化钢材及零部件表面处理技术的发展趋势(三)
研究表明,防撞性设计制造薄壁结构在汽车行业仍然是一个主要挑战。车身吸能构件多用冲压工艺制造,其厚度不均匀,残余应变/应力较大,特别是高强钢或高强钢等材料。此外,材料性能、冲压工艺和几何形状的不确定性一般从制造阶段传播到操作阶段,可能导致冲击响应的不可控波动。针对这些关键问题,提出了一种基于多目标可靠性的设计优化方法,将冲压不确定性与薄壁结构进行耦合优化。首先将冲压过程的有限元分析结果转化为耐撞性。其次,采用替代建模技术,从均值和标准差两方面对成形和冲击响应进行近似化处理。第三用多目标粒子群优化算法,结合蒙特卡罗,寻找可靠的设计解。该方法不仅显著提高了汽车零件结构的成形性和耐撞性,而且能提高其安全可靠性。
由于车辆的能量耗散能力显著下降,抗撞性能的提高成为轻型车辆发展的关键。因此,他们进行了材料增强和结构优化,如汽车结构涉及到的薄壁框架,表面机械磨损处理,在不牺牲延性的前提下诱导金属纳米结构增强强度等措施,充分利用了高强度钢材的优异性能,进行了大量的实验和数值模拟,测试结果表明,与目前市场上的同类产品相比,产品重量轻、强度高、安全影响程度高,可以满足轻量化汽车的要求。
通过使用有限元分析法,对于两种不同钢铁材料的座椅框架在不同的加载条件下进行优化厚度和改进设计的文章,研究发现软钢材料制造的车座框架与用的高强度钢材代替,使用的高强度钢材可以显著减轻座椅框架的重量,同时可以在车辆的使用寿命内提高燃油效率,并减少CO2排放。
在高强度钢板的加工方面研究,通过设计一种新型的凹口冲头实现汽车高强度钢板的一次冲程多步翻边,采用增量成形的概念,改进拉伸翻边冲头形状,提高汽车用高强钢的拉伸翻边性能,结果表明,与单步翻边法相比,这种新方法的拉伸应变从0.406降至0.280,拉伸角边大应变转移到直