本文根据已经完成的一种基于欧拉方程外加源项的模型来计算预测大小动叶可调烘箱循环风机的气动性能,主要采用损失和落后角模型用来考虑叶片排和摩擦对气流的影响,并用堵塞因子修正环壁附面层堵塞影响。根据在风机安装角未发生改变时的实验性能,优化模型中的损失系数和落后角系数使得计算结果和实验计算相近。改变动叶可调风机的安装角后,本模型预测得到的该风机在安装角变化( +
烘箱循环风机
本文根据已经完成的一种基于欧拉方程外加源项的模型来计算预测大小动叶可调烘箱循环风机的气动性能,主要采用损失和落后角模型用来考虑叶片排和摩擦对气流的影响,并用堵塞因子修正环壁附面层堵塞影响。根据在风机安装角未发生改变时的实验性能,优化模型中的损失系数和落后角系数使得计算结果和实验计算相近。改变动叶可调风机的安装角后,本模型预测得到的该风机在安装角变化( + 10°,+ 5°,- 5°,- 10°) 的性能曲线与实验结果误差小于2%。通过定期维护,及时检查和更换风扇滑块和衬套等易损件,检查叶柄装置,润滑叶柄轴承,旋转维护液压缸,清洗油站和更换润滑油,清洗油冷却器,调整适当的供油压力。结果表明烘箱循环风机模型使用经过优化后的损失和落后角模型能准确地预测出该动叶可调轴流风机在全工况下的气动性能。
在实际的烘箱循环风机叶轮机械中,气体的流动是一种十分复杂的、非定常的、全三维的流动。为了提高程序的计算速度,需要做出如下假设: 气体为完全气体; 流场为轴对称; 不考虑径向变化,流场沿叶片中弧线。
在轴流风机的数值计算中,本文采用Stratford 的模型对环壁边界层进行模拟。环壁边界层会沿壁面产生位移厚度,该模型假设位移厚度是沿着叶片排连续分布的,同时端壁边界层和叶尖间隙漏流发生的总压损失也包含在三维总压修正系数3D中,该模型能够计算得出比较合理的堵塞因子。分别采用20万、30万、55万和60万网格计算后,选择设定单元大小15mm,生成网格单元数量为30万、节点数量45万,在计算时间和计算精度上为合适。
在矿井掘进巷道中,采用短距离通风时,工作面所需的风量和压力较小,因此减小叶片安装角度可有效降低风机的输出功率,节约能耗;在进行长距离通风时,所需的风量和压力为La。适当增烘箱循环风机大叶片安装角度,可满足工作面高气压大流量的需要。为此,设计了叶片角度可调的对旋轴流风机叶轮结构。通过模态分析可以得到叶片的固有频率和振动模态,分析了叶片调节机构对叶轮机构振动特性的影响。本文的研究对象是叶片角度固定的叶轮和叶片角度可调的叶轮。两个叶轮的轴向间距为95mm,叶片数相等。个叶轮有14个叶片,第二个叶轮有10个叶片。烘箱循环风机叶轮的外径约为800mm,轮毂比为0.60。两个叶轮均为反旋转结构,消除了中间和后部的固定导叶。两级叶轮以相同速度反向运动,在集热器前部形成较大的负压。由于进风口和出风口在同一壁面上,形成了由近风扇到远风扇的温度梯度。外部空气通过集热器缓慢流入风道。在一级叶轮的旋转作用下,动能和压力势能增大,气流迅速流向二级叶轮,烘箱循环风机的二级叶轮反向加速。能量,终空气通过扩散器顺利流出风管,这种结构可以实现风机的高风压、大流量、率、低噪声和运行。
分析总结了电厂动态可调轴流风机存在的主要问题及有效的处理措施,使烘箱循环风机维修人员能够及时解决问题,较大限度地减少电厂的损失。电厂动态可调轴流风机一般由以下部分组成:转子、进气箱、壳体、扩散器、中间轴、联轴器、电机和液压润滑油站。转子套包括轴承箱、叶轮和液压调节装置。利用数值模拟方法对导叶与叶轮匹配进行研究,表明导叶数目增加后模型压力提高329Pa,轴功率降低1。
烘箱循环风机叶轮常见问题及处理措施。
(1)叶片漂移与相邻叶片不同步:由于调节杆螺钉与叶柄的拧紧力矩不足,叶片漂移,无法锁定,适当增大螺栓扭矩即可拧紧;
(2)叶片磨损:诱导D前除尘装置效果差。排风机会造成叶片不规则磨损,导致叶轮不平衡,提高除尘器的除尘效果,改善叶片表面特殊材料的喷粉涂层,可有效提高叶片的性。
(3)烘箱循环风机叶片出现裂纹。如果在运行过程中杂质进入铝叶片的叶轮,即使是一个小螺杆,叶片也会在杂质的冲击下开裂或断裂,甚至会发生更严重的安全事故。因此,在风机运行过程中,会出现裂纹。必须避免有杂物进入;有研究表明,100Hz以下的噪声,大气吸收作用微弱,在10km的传播范围内,噪声几乎不衰减。钢叶片裂纹主要与材料选择、材料切削方式和翼型选择有关;
(4)滑块磨损:滑块材料柔软或推盘光洁度不够,不易使滑块磨损,引起风机振动,可通过提高滑块材料的硬度和推动盘的光洁度;
(5)烘箱循环风机叶片卡涩:在叶柄轴承中润滑油添加不足,容易导致滚珠燃烧和轴承叶柄损坏,导致叶柄卡涩。同时,如果轴承和滚珠的内外套有裂纹、斑点、磨损锈迹、过热变色和间隙,应更换新轴承,以确保叶片转动灵活。


对烘箱循环风机的结构和工作原理是一种具有对旋结构的轴流风机。两级叶轮直接与两台电机连接,两级叶轮作为导叶反向旋转,形成一个反向旋转结构。本文的研究对象是FBDNO8.0对旋轴流风机,主要用于煤矿巷道的强制通风。两级叶轮额定转速2900r/min,一级叶轮14片,二级叶轮10片,叶轮外径800mm,轮毂比0.60,烘箱循环风机的两级叶轮安装角度分别为46度和30度。工作压力8000pa,较大流量950m3/min,对旋风机结构如图1所示。两级叶轮以相反的速度高速旋转,在风机前部形成较大的负压,使风机外的空气能够流入风中。入口集尘器的作用是保证风管内气流均匀、畅通,有效提高风机运行效率,降低风机噪声。在个叶轮的旋转作用下,烘箱循环风机气流的动能和压力势能增加,并迅速流向第二个叶轮,第二个叶轮可以加速,以获得更高的能量。气流高速稳定地通过扩散器流出风道。依次