氦质谱检漏仪的发展史必须追溯到上个世纪初。早在1918年期间,欧洲因和的需要就开始接触检漏,并开始对检漏手段的提升做了大量的基础研究工作,直到1941年,当时,科学家获知德国正在研制一种新型。这种的原理就是基于刚刚发现的铀的同位素的裂变现象。罗斯福认为必须抢先达到此目的,加之第二年的珍珠港事件加速诞生了“曼哈顿”计划。这个计划的两个目标之一就是研制(即)。为此,必须研制超高灵敏的检漏仪。其
软包锂电池氦检设备
氦质谱检漏仪的发展史必须追溯到上个世纪初。早在1918年期间,欧洲因和的需要就开始接触检漏,并开始对检漏手段的提升做了大量的基础研究工作,直到1941年,当时,科学家获知德国正在研制一种新型。这种的原理就是基于刚刚发现的铀的同位素的裂变现象。罗斯福认为必须抢先达到此目的,加之第二年的珍珠港事件加速诞生了“曼哈顿”计划。这个计划的两个目标之一就是研制(即)。为此,必须研制超高灵敏的检漏仪。其原因还得从的浓缩谈起。
天然铀中含有铀238和两种同位素。能够发生裂变反应的同位素是,是的主要原料。可是天然铀中的含量仅0.7%。为此,科学家只能采用气体扩散法,从铀238中把含量甚微的分离出来。气体扩散法分离时铀238的原理是这样的:若有一个极其微小的孔隙, 部分气体分子通过这个微孔的速率取决于它们的分子量。分子量小的气体分子能够较快的通过这些微孔。如果让混合气体通过由多孔膜形成的长管,就可以成功地把两种气体分离。
氦质谱检漏仪的结构
收集极
收集极是对准出口电极狭缝安装的,其作用是收集穿过出口电极狭缝的氦离子并通过一个电阻输入到小电流放大器进行离子流的放大和测量。由于氦离子一般只有10-13~10-12A,要使小电流放大器一极输入信号电压足够大,则输入电阻必需很大(一般高于1010欧),一级放大用的静电计管必须要高度绝缘,所以把高阻及静电计管放在高真空的质谱室中。
真空系统
仪器的真空系统提供质谱正常工作所需要的真空条件,不同型号的检漏仪其真空系统有较大的差别。图5为常见的普通型氦质谱检漏仪真空系统。
氦质谱检漏仪为气体工业名词术语,用氦气或者氢气作示漏气体,以气体分析仪检测氦气而进行检漏的质谱仪。氦气的本底噪声低,分子量及粘滞系数小,因而易通过漏孔并易扩散;另外,氦系惰性气体,不腐蚀设备,故常用氦作示漏气体。将这种气体喷到接有气体分析仪(调整到仅对氦气反应的工作状态)的被检容器上,若容器有漏孔,则分析仪即有所反应,从而可知漏孔所在及漏气量大小。
一、氦质谱检漏仪的应用范围:
在一般工业领域里原子能、发电厂、配电站、合成氨的氮肥生产厂、汽车制造业、造船工业、制冷工业、冶金工业、输气管道、气罐、油罐、锅炉快餐食品包装等都离不开检漏问题。
二、氦质谱检漏仪的功能特点:
1、支持正压检漏,负压检漏。
2、自动跟踪本底,提供可靠的测量结果。
3、优化设计的质谱系统和智能算法确保在所有量程响应。
4、高可靠性的真空系统和质谱系统确保清氦。
5、支持氮气破空,不受环境氦气干扰,降低本底。
6、机器的性能支持长时间在线测试。
7、机器的性能支持几秒一次的高频率测试。
8、配有检漏口精细过滤器,过滤细微杂质,确保机器不受杂质影响和损伤。
9、双铱丝离子源,有效的系统设计,防大气冲击。
10、支持定制检漏工作台,更加便捷使用。
一、正压漏孔的制作
漏孔是在壁两侧压力差或浓度差作用下,使气体或液体从壁一侧流到另一侧的孔洞、孔隙或一个封闭器壁上的其它结构。气体之间存在压力差或浓度差时形成气体流动,通过漏孔的气体流动通常称为泄漏。在实际应用中泄漏一般产生在两种状态下,从高压(高于大气压)漏向大气和从大气漏向真空。
漏孔可为负压漏孔,也可为正压漏孔,主要决定于使用条件。在入口压力100(1±5%)KPa,出口压力1KPa温度为25±5℃条件下,25℃的空气,通过漏孔的流量来校准空气漏率。
在入口压力(大于100KPa—20000KPa)出口压力100KPa,温度23±7℃情况下,漏率值不变的漏孔,为正压漏孔,它受压力、温度、气体种类影响。
正压漏孔常用全金属通导型,其特点反应快,无累积,漏率稳定,不易堵塞。目前常规的正压漏孔可伐压扁型与无氧铜压扁型,大缺点是随着压力增加,漏率值随着压力减小,不能恢复其原来值,漏孔芯发生形变。由于材料的性质,用于高压漏孔就变得不能。
(作者: 来源:)