技术原理通常一切气体均可以渗透通过高分子膜,其过程是气体分子首先被吸附并溶解于膜的高压侧表面,然后借助于浓度梯度在膜中扩散,后从膜的低压侧解析出来,其结果是小分子和极性较强的分子的通过速度较快,而大分子和极性较弱的分子的通过速度较慢,膜分离就是利用各种气体在高分子膜上的渗透速率的不同,来进体分离的,其分离推动力为气体在膜两侧的分压差,所以膜法气体分离没有相变、不需要再生,它具有
二氧化碳高分子膜价格
技术原理通常一切气体均可以渗透通过高分子膜,其过程是气体分子首先被吸附并溶解于膜的高压侧表面,然后借助于浓度梯度在膜中扩散,后从膜的低压侧解析出来,其结果是小分子和极性较强的分子的通过速度较快,而大分子和极性较弱的分子的通过速度较慢,膜分离就是利用各种气体在高分子膜上的渗透速率的不同,来进体分离的,其分离推动力为气体在膜两侧的分压差,所以膜法气体分离没有相变、不需要再生,它具有设备简单、操作及维护费用低等优点。
一根膜分离器(组件)是由成千上万根中空纤维分离膜集装在一个外壳内,其结构类似于列管式换热器,它可以在的空间里提供分离膜表面积,所以膜分离系统具有占地面积小、重量轻、分离等优点。膜分离制氮除可以提供洁净的高浓度氮气外,还可以同时提供富氧空气。
分子筛空分制氮
也叫PSA或变压吸附式,以空气为原料,以碳分子筛作为吸附剂,运用变压吸附原理,利用碳分子筛对氧和氮的选择性吸附而使氮和氧分离的方法,通称PSA制氮。此法是七十年代迅速发展起来的一种新的制氮技术。与传统制氮法相比,它具有工艺流程简单、自动化程度高、产气快(15~30分钟)、能耗低,产品纯度可在较大范围内根据用户需要进行调节,操作维护方便、运行成本较低、装置适应性较强等特点,故在3000Nm3/h以下制氮设备中颇具竞争力,越来越得到中、小型氮气用户的欢迎,PSA制氮已成为中、小型氮气用户的方法。
依据国际性的剖析,碳分子筛行业展现下列发展趋向:,伴随着变压吸附的制氮设备的应用范畴不断扩大,对碳分子筛的要求持续提升,这将进一步推动行业发展趋势,将来两年,这一行业将从一个冷僻的行业越来越大家都知道。次之,伴随着运用深层的提升,对碳分子筛的产氮量、氮利用率、堆密度、抗拉强度等指标值的规定愈来愈高,进一步提高商品性能参数将是这一行业将来发展趋势的新趋势。
(作者: 来源:)