工作原则,采用压缩空气从底部冲进罐体料层,利用强大的压缩空气推力使物料随压缩空气沿筒壁螺旋式上升,形成流态化混合状态,喷入的空气经由上方的仓顶除尘器排出,经过若干个脉冲吹气和停顿间隔脉冲反吹,并且通过混合装置粉粒体流动化的同时,液剂仓里的液剂经由加液泵挤压输送至混合头内,一同喷入混合机桶内使液体均匀的添加至粉体中一同均化,同时达到多种粉体
加液脉冲气流混合机生产厂家
工作原则,采用压缩空气从底部冲进罐体料层,利用强大的压缩空气推力使物料随压缩空气沿筒壁螺旋式上升,形成流态化混合状态,喷入的空气经由上方的仓顶除尘器排出,经过若干个脉冲吹气和停顿间隔脉冲反吹,并且通过混合装置粉粒体流动化的同时,液剂仓里的液剂经由加液泵挤压输送至混合头内,一同喷入混合机桶内使液体均匀的添加至粉体中一同均化,同时达到多种粉体及液体均化
粉体的重要应用有哪些?粉体在我们日常生活和工农业生产中的应用非常广泛。如面粉、水泥、塑料、造纸、橡胶、陶瓷、药品等,下面是简单地叙述粉体的几个重要的应用:
一、在陶瓷材料工业:
传统陶瓷制备过程如下:
将矿物原料→ 陶瓷粉料→按照比例混合均匀→将坯料成型→烧结→获得陶瓷成品。
1、陶瓷材料的优异性能:与金属相比:具有耐高温,耐腐蚀,损,高硬度的特性;在声、光、电、磁、热等方面具有一些特性。
2、陶瓷材料的致命弱点:
脆:不发生显著变形即脆断。 改善脆性是陶瓷学者所追求的目标,是永恒话题。
难加工:它本身硬度极高,可做刀具材料。谁能加工它?
难烧结:陶瓷材料熔点一般都很高,而烧结温度与熔点有关,因此烧结温度也很高。
3、纳米粉体的优势:用纳米粉增韧陶瓷成为可能,可加工,降结温度。
粉体粒度对3Y-TZP材料微观结构的影响:从两种材料的表面和断面的XRD图谱中可以看出,两种材料的原粉只有单一的t相氧化锆,无单斜(m)相氧化锆的衍射峰出现。减少污染:超微粉碎是在封闭系统下进行,既避免了微粉污染周围环境,又可防止空气中的灰尘污染产品。而烧结后在表面(代表材料内部)只有微米粉烧结体出现了m相,纳米粉烧结体仍是全部由t相组成,这可能是微米粉烧结温度高,烧结后晶粒有异常长大,超过了相变临界晶粒尺寸,冷却时自发产生了少量相变;断面上两者均出现了m相氧化锆的衍射峰。
气流分级的工作原理:
气流分级生产线主要由气流分级机主机、旋风分离器、脉冲除尘器、高压引风机、电控柜等组成。
气流分级主机主要由二次风、三次风及叶轮、传动系统等组成。生产线工作时,物料在引风机引力的作用下由分级机的入料管进入。在分级机内部空气与物料充分混合,在分级机的下筒体三次风及分散锥的作用下,气固两相流被充分分散。
气固两相流上升至分级区时,每个单独的颗粒既受到分级轮旋转产生的离心力,又受到引风机引力产生的向心力。中药材的超微粉碎存在如下的问题:1、不易受力—中药材中大多数是植物,其种类繁多,性质不一,有相当一部分富含纤维且比重较轻,在粉碎机械之中不易受到机械力的作用,使用者往往有“铁锤打棉花”的感慨。当颗粒受到的离心力大于向心力时,分级径以上的粗粒子被甩到筒体内壁,失速后沿筒内壁下落至二次风淘洗区。空气在引风机引力作用下,穿过均匀分布在锥体上的二次进风口进入淘洗区,并对粗细混合粉进行风筛式的淘洗作用。这样,混杂或粘附于粗料中的细颗粒被分离干净,回流到分级区,粗颗粒由卸料装置排出分级机。符合粒度要求的细颗粒随气流进入旋风收集器、脉冲除尘器被收集下来,净化后的气体通过引风机排风口被排放到大气中。
(作者: 来源:)