牌照字符识别方法
主要有基于模板匹配算法和基于人工神经网络算法。基于模板匹配算法首先将分割后的字符二值化并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,选择佳匹配作为结果。基于人工神经网络的算法有两种:一种是先对字符进行特征提取,然后用所获得特征来训练神经网络分配器;另一种方法是直接把图像输入网络,由网络自动实现特征提取直至识别出结果。
小区车牌识别系统
牌照字符识别方法
主要有基于模板匹配算法和基于人工神经网络算法。基于模板匹配算法首先将分割后的字符二值化并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,选择佳匹配作为结果。基于人工神经网络的算法有两种:一种是先对字符进行特征提取,然后用所获得特征来训练神经网络分配器;另一种方法是直接把图像输入网络,由网络自动实现特征提取直至识别出结果。
车牌识别技术的介绍
在现阶段,车牌识别已经有很多产品出来了,比如说停车场车牌自动识别,这些大多数都是针对固定角度,目前针对复杂环境下的车牌识别,识别还有待提高,这些复杂环境主要是指:灯光条件,扭曲的车牌,还有泥土遮挡的车牌。车牌识别技术可以分类三个部分,车牌定位, 字符分割 ,车牌识别。由于字符分割在一定程度下会影响识别率,近就有一些人提出免分割的车牌识别,将车牌识别分割成两个部分,车牌定位,车牌识别。
车牌识别原理车牌定位模块
车牌定位模块是一个十分重要的环节,是后续环节的基础,其准确性对整体系统性能的影响巨大。本系统实现了一种完全基于学习的多种特征融合的车牌定位新算法,适用于各种复杂的背景环境和不同的摄像角度。同步内置的区域设置功能,可以很大程度上减少外部环境对于车牌识别的干扰,达到比较好的识别效率。

车牌识别
在停车场管理中,车牌识别也是识别车辆身份的主要手段。只有完好的将停车场的性有针对性的做算法处理才能做出适合停车场的车牌识别系统,关于停车场多环境的车牌识别技术已有一家叫火眼臻睛车牌识别系统有一套专门的算法,但是识别效果如何还得以测试结果说话。当然也期待更多的明确停车场车牌识别概念的出现,那将是行业之幸。

(作者: 来源:)