随着新能源汽车的出现,充电桩也随之出现,从一开始的塑料壳体到现在逐渐转换为铝合金壳体,重要的因素就是铝合金高强度的性能。绝缘/防锈 一般金属外壳必须做好绝缘处理,否则长时间使用可能因为锈蚀而会有漏电的潜在风险,而塑料本就是绝缘材料且不会生锈,使用在外壳上的潜在安全风险远金属。而对于建设在停车场或私人场所的交流充电桩,它的功率不大,充电桩外壳完全可以用可塑复杂结构的塑胶材料来替换
充电桩外壳设计
随着新能源汽车的出现,充电桩也随之出现,从一开始的塑料壳体到现在逐渐转换为铝合金壳体,重要的因素就是铝合金高强度的性能。绝缘/防锈 一般金属外壳必须做好绝缘处理,否则长时间使用可能因为锈蚀而会有漏电的潜在风险,而塑料本就是绝缘材料且不会生锈,使用在外壳上的潜在安全风险远金属。而对于建设在停车场或私人场所的交流充电桩,它的功率不大,充电桩外壳完全可以用可塑复杂结构的塑胶材料来替换,但是虽然热量相比直流的要小很多,但是散热也是不容忽视的。
由于人体可以直接接触充电桩,为了达到高速充电的效果,充电桩的使用电流非常大,这也对充电桩外壳钣金的电绝缘性能、耐火性能和阻燃性能提出了严格的要求。充电桩结构部件为壳体、外壳,要求物理性能,耐候、耐低温、阻燃性能好,具有一定的耐油性,该部件材料可选用PC或PC/ABC合金。充电桩外壳注塑加工联系方式,塑料在成型过程中,模具温度会直接影响到塑料的充模、定型、成型周期和塑件质量。所以,我们在模具上需要设置温度调节系统以到达理想的温度要求。

在塑料之后,SMC复合材料成为了充电桩外壳选材的新宠。极其强大的耐老化和耐候性时期拥有超长的使用寿命,用这种材料做的充电桩外壳可以在户外用长达几十年而无损。直流充电桩充电功率极大,充电时间又长,产生的热量非常大,虽然目前充电桩散热系统设计精良,但钣金外壳的散热性、耐温性、阻燃性是塑料无法企及的,因此在公共建筑充电站内直流充电桩目前还是很难被塑料所替代。铝冷变形后,由于晶体内部和晶体之间的损伤、晶格畸变和第二种残余应力的出现,塑性指数急剧下降,在极限状态下可能接近完全脆性状态。另一方面,由于晶格畸变、位错增加、晶粒伸长和细化以及亚结构,强度指标大大提高,即出现加工硬化现象。

塑料生产及成型的加工过程所需消耗的能源远小于金属,对于节约能源以及减少二氧化碳的排放贡献高于金属。使用免喷涂塑料外壳更可以消除金属涂装的发性有机化合物(VOC ) 机排放。铝合金的充电桩外壳不一样,它的表面与空气接触后会形成坚固的氧化层,这种氧化层非常耐腐蚀,一方面能保护充电桩内部的电源,另一方面也为用户提供了方便,使得铝合金壳体的应用越来越广泛。新能源充电桩已在全世界范围内开始应用,使用环境和地区也是各不相同。在很多沿海环境,充电桩就面临了紫外线和盐雾腐蚀冲击。如果选用普通外壳的充电桩,就很容易发生腐蚀的情况,使内部的电子元件受损。

(作者: 来源:)