使液体、气体介质强迫对流并均匀混合的器件。 搅拌器的类型、尺寸及转速,对搅拌功率在总体流动和湍流脉动之间的分配都有影响。因此,借助于实验方法,再结合理论分析,是求得搅拌功率计算公式的惟一途径。一般说来,涡轮式搅拌器的功率分配对湍流脉动有利,而旋桨式搅拌器对总体流动有利。对于同一类型的搅拌器来说,在功率消耗相同的条件下,大直径、低转速的搅拌器,功率主要消耗于总体流动,有利于宏观混
电动搅拌器
使液体、气体介质强迫对流并均匀混合的器件。 搅拌器的类型、尺寸及转速,对搅拌功率在总体流动和湍流脉动之间的分配都有影响。因此,借助于实验方法,再结合理论分析,是求得搅拌功率计算公式的惟一途径。一般说来,涡轮式搅拌器的功率分配对湍流脉动有利,而旋桨式搅拌器对总体流动有利。对于同一类型的搅拌器来说,在功率消耗相同的条件下,大直径、低转速的搅拌器,功率主要消耗于总体流动,有利于宏观混合。小直径、高转速的搅拌器,功率主要消耗于湍流脉动,有利于微观混合。搅拌器的放大是与工艺过程有关的复杂问题,至今只能通过逐级经验放大,根据取得的放大判据,外推至工业规模。
类型:①旋桨式搅拌器由2~3片推进式螺旋桨叶构成(图2),工作转速较高,叶片外缘的圆周速度一般为5~15m/s。推进式搅拌机(器)容积循环速率大,在工作时能很好地使流体在随浆叶旋转的同时进行上下翻腾,即容易使低粘度流体流动处于湍流状态。旋桨式搅拌器主要造成轴向液流,会产生较大的循环量,适用于搅拌低粘度 (<2Pa·s)液体、乳浊液及固体微粒含量10%的悬浮液。搅拌器的转轴也可水平或斜向插入槽内,此时液流的循环回路不对称,可增加湍动,防止液面凹陷。
涡轮式搅拌器(齿状叶片为例),该搅拌器有多种型式。大部分盘状叶片都属此类(如齿状叶片)其叶轮直径亦较小,通常也仅为釜径的0.2~0.5倍,转速可达10 ~ 500 r/min,叶端圆周速度可达4~ 10m/s。
涡轮式搅拌器不仅能产生较大的液体循环量,而且可对桨叶外缘附近的液体产生较强的剪切作用,常用于黏度小于50Pa·s的液体的反应、混合、传热以及固体在液体中的溶解、悬浮和气体分散等过程。三直叶锥底式SZP:本类搅拌器为径流型搅拌器,使用条件同平直叶开启涡轮,适用于锥形容器搅拌的至下层搅拌,可应用于一般的反应、溶解、悬浮、传热、乳化、结晶等操作。但对于易分层物料,如含有较重颗粒的悬浮液,此类搅拌器则不适用。
(作者: 来源:)