焊接的三大缺陷,产生原因、危害、预防措施:
(1)焊缝化学成分或组织成分不符合要求: 焊材与母材匹配不当,或焊接过程中元素烧损等原因,容易使焊缝金属的化学成份发生变化,或造成焊缝组织不符合要求。这可能带来焊缝的力学性能的下降,还会影响接头的耐蚀性能。
(2)过热和过烧:若焊接规范使用不当,热影响区长时间在高温下停留,会使晶粒变得粗大,即出现过热组织。若温度进一步升高
焊接材料
焊接的三大缺陷,产生原因、危害、预防措施:
(1)焊缝化学成分或组织成分不符合要求: 焊材与母材匹配不当,或焊接过程中元素烧损等原因,容易使焊缝金属的化学成份发生变化,或造成焊缝组织不符合要求。这可能带来焊缝的力学性能的下降,还会影响接头的耐蚀性能。
(2)过热和过烧:若焊接规范使用不当,热影响区长时间在高温下停留,会使晶粒变得粗大,即出现过热组织。若温度进一步升高,停留时间加长,可能使晶界发生氧化或局部熔化,出现过烧组织。过热可通过热处理来消除,而过烧是不可逆转的缺陷。
(3)白点:在焊缝金属的拉断面上出现的象鱼目状的白色,即为自点F白点是由于氢聚集而造成的,危害极大。
在使用机器人进行焊接时,要注意操作技巧,以免设备出现故障,影响正常使用。那么,你知道哪些正确的运用方法。下面
焊接机器人厂家就详细为您介绍下这方面的内容,用户可以参考后使用。
1、作为示教一再现式机器人,工件的组装质量和精度须有很高的一贯性。
2、应用机器人要严格控制零件的制造质量,提高焊接零件的组装精度。零件的表面质量、坡口尺寸和组件精度会影响焊缝跟踪效果。从以下几个方面可以用来提高零件焊接质量和焊接件的组装精度。
(1)编制焊接式机器人焊接工艺,并对焊接件尺寸、焊缝和组装尺寸做出严格规定。一般的零件和坡口尺寸公差控制在±0.8mm以内,组装尺寸误差控制在±1.5mm以内,可以大幅度降低焊接产生空隙和底切等焊接问题的概率。
(2)采用精度的组装工装提高焊接件的组装精度。
焊缝跟踪系统是焊接机器人化方面的
当需要在不精准的零件上精准定位焊缝时,焊缝跟踪系统必不可少。例如考虑在不精准的零件上使用角焊缝焊接。采用焊缝跟踪系统的例子还包括制造适用于电动汽车电池组的机器,不锈钢箱体的激光焊接角焊缝,电气应用机柜和排气系统。在这方面,焊缝跟踪系统可用于在
焊接质量方面要求必须始终很高的生产系列中。
当然,焊缝跟踪系统可用于许多其他焊接应用。如果需要,北京创想智控可以开发相应的技术,专门用于集成到您的工序中。
焊缝跟踪系统可在要求高机械精度的焊接工件上实现可靠的高公差焊接。焊缝跟踪系统会测量焊缝的确切位置,并校正激光束的位置,以使激光束准确地跟随焊缝,即使焊缝并非精准处于正确位置,也能保证精准焊接。
激光传感器测量焊缝的位置,机器人或焊接头将机器人路径校正到正确的位置。得益于此技术,焊接机器人可以沿焊缝精准控制,从而确保了很高的质量,并且能够进行简单的质量控制。
在焊接过程中,传感器将激光束位置与已编程路径进行比较,可以立即调整激光束位置。因此,焊缝位置始终精准,激光焊缝跟踪系统有助于确保非常高且稳定的焊缝质量。
激光焊缝跟踪传感器面临的挑战是铝、钢和抛光不锈钢等材料上的反射。在这方面,北京创想智控的经验也有助于实现可靠的解决方案。
针对示教型焊接机器人,不能在
焊接过程中实时纠正焊缝偏差导致焊接精度较低的问题,研发了基于激光视觉的机器人焊缝,实时纠正机器人焊接偏差,提升机器人焊接精度。
目前,焊接机器人已在市场上占据一定的份额,然而在焊接过程中,由于工件受热发生变形、工件夹具的安装误差、工件的不一致性等情况会导致机器人焊偏,因而,需要进一步配置焊缝纠偏功能,用来提高原示教型焊接机器人的焊接精度。
激光焊缝跟踪技术作为一种新兴的偏差检测技术,应用在焊接机器人上,具有精度高、非接触式、可靠性高等优点;其次,该技术具有较宽的光谱频率响应范围,如采用人眼看不见的红外线,提高检测的范围。另一方面,以激光器为光源,不仅因为激光具有良好的单色性、方向性和干涉性、能量密度高等优点,同时可以极大地提高检测的信噪比,从而更容易得到较好的跟踪效果。
这个只需要在现有的示教型焊接机器人的基础上,通过增加创想机器人焊缝跟踪系统来识别焊缝偏差,也无需外接工控机,实时控制机器人自动调节焊接位置,进行自动矫正,从而提高焊接位置的准确性,解决原先示教型机器人在焊接过程中由于工件受热产生变形、工件夹具的安装误差、工件的不一致性等情况会导致的焊接偏差问题。

(作者: 来源:)