LTCC基板电路概述
目前的集成封装技术主要有薄膜技术、硅片半导体技术、多层电路板技术以及LTCC技术。LTCC技术是一种低成本封装的解决方法,具有研制周期短的特点。低温共烧陶瓷技术可满足后者轻,薄,短,小的需求。然而,低温共烧陶瓷基板具有高硬度和易碎的特性。因此,当切割机切割硬基板,在基板和切割刀片之间会产生一个较大的摩擦力,该摩擦产生的应力转移到切割刀片。这会导致以LTCC为基板的电
ltcc工艺设备公司
LTCC基板电路概述
目前的集成封装技术主要有薄膜技术、硅片半导体技术、多层电路板技术以及LTCC技术。LTCC技术是一种低成本封装的解决方法,具有研制周期短的特点。低温共烧陶瓷技术可满足后者轻,薄,短,小的需求。然而,低温共烧陶瓷基板具有高硬度和易碎的特性。因此,当切割机切割硬基板,在基板和切割刀片之间会产生一个较大的摩擦力,该摩擦产生的应力转移到切割刀片。这会导致以LTCC为基板的电子产品合格率和产量的下降。因此,当陶瓷基板被切割加工时如何提高产品的得率是一个重要的课题。 图1为典型的LTCC基板示意图[3],由此可知,采用LTCC工艺制作的基板具有可实现集成电路芯片封装、内埋置无源元件及高密度电路组装的功能。

LTCC基板排胶与烧结
烧结的技术要点是控制烧结收缩率和基板的总体变化,控制两种材料的烧结收缩性能以免产生微观和宏观的缺陷,以及实现导体材料的作用和在烧结过程中去除粘结剂。普通LTCC 基板的烧结收缩主要是通过控制粉体的颗粒度、流延粘合剂的比例、热压叠片的压力、烧结曲线等手段实现。但一般LTCC 共烧体系沿X-Y 方向的收缩仍为12-16%,借助无压烧结或助压烧结等技术,可以获得沿X-Y 方向零收缩的材料。
LTCC电路基板接地钎焊
解启林,等[7](2009)报道了LTCC电路基板接地钎焊工艺设计,提出了一种提高LTCC电路基板接地钎焊的钎着率及可靠性的钎焊工艺设计。在LTCC电路基板接地面设置(Ni+M)复合金属膜层,根据试验测试比较,其耐焊性(>600s)明显优于常规金属化接地层(常规要求>50s);在LTCC电路基板的接地面的一端预置“凸点”,通过x射线扫描图对比分析,增加“凸点”的设计提高了接地钎焊的钎着率。研究表明:新的钎焊工艺设计保证了LTCC电路基板接地的钎焊可靠性和一致性。
LTCC电路基板表面金属化方法
LTCC电路基板表面金属化方法的目前大致有两种:厚膜烧结法和溅射薄膜再电镀加厚法。溅射薄膜再电镀加厚法虽然在单层陶瓷基板的薄膜电路加工过程中已广泛采用。但是在LTCC电路基板上还只是处于探索阶段,目前提高LT℃C电路基板耐焊性通用的方法是烧结一层钯银层。
耐焊性试验方法
选取3种试样进行耐焊性试验对比:(1)号厚膜钯银层(12μm左右)试样;(2)号厚膜金层(37μm左右)试样;(3)号设置含Ni阻挡层哺3的(Nj+M)复合金属膜层(10μm左右)试样,M为金属代号。
(作者: 来源:)