莫尔条纹在生活中比较常见,如两层薄薄的丝绸重叠在一起,即可以看到不规则的莫尔(Morie)条纹。基本原理是将两块等间隔排列的直线簇或曲线簇图案重叠起来,以非常小的角度进行相对运动来形成莫尔条纹。因光线的透射与遮挡而产生不同的明暗带,即莫尔条纹。莫尔条纹随着光栅的左右平移而发生垂直位移,此时产生的条纹相位信息体现了待测物体表面的深度信息,再通过逆向的解调函数,实现深度信
在线云建模
莫尔条纹在生活中比较常见,如两层薄薄的丝绸重叠在一起,即可以看到不规则的莫尔(Morie)条纹。基本原理是将两块等间隔排列的直线簇或曲线簇图案重叠起来,以非常小的角度进行相对运动来形成莫尔条纹。因光线的透射与遮挡而产生不同的明暗带,即莫尔条纹。莫尔条纹随着光栅的左右平移而发生垂直位移,此时产生的条纹相位信息体现了待测物体表面的深度信息,再通过逆向的解调函数,实现深度信息的恢复。这种方法具有精度高、实时性强的优点,但是其对光照较为敏感,抗干扰能力弱。
经过配准后的深度信息仍为空间中散乱无序的点云数据,仅能展现景物的部分信息。因此必须对点云数据进行融合处理,以获得更加精细的重建模型。以Kinect传感器的初始位置为原点构造体积网格,网格把点云空间分割成很多的细小立方体,这种立方体叫做体素(Voxel)。通过为所有体素赋予SDF(Signed Distance Field,有效距离场)值,来隐式的模拟表面。
利用相机进行三维重建已经不是一个新鲜的话题,重建的三维环境用途很广泛,
比如检测识别目标,作为深度学习的输入,视觉SLAM。
目前,比较流行的是单、双目的重建。
稀疏重建:
通常是重建一些图像特征点的深度,这个在基于特征的视觉SLAM里比较常见,得到的特征点的深度可以用来计算相机位姿。稀疏重建在实际应用,比如检测,避障,不能满足需求。
(作者: 来源:)