武汉思特进科技发展有限公司成立于2007年,是一家以实验技术研发、实验产品研发、日化产品研发、实验项目承接为一体的高新技术公司;已有研究证明,可以诱导酵母细胞凋亡,并且伴随着胞内活性氧(ROS)水平的升高,但是关于诱导酵母细胞凋亡的调控机制研究尚处在起步阶段,尤其是动物体内相对保守的凋亡抑制基因BCL-2和CED-9在此过程中的作用尚未见报道。公司实验中心有分子生物学平台、细胞
启动子筛选
武汉思特进科技发展有限公司成立于2007年,是一家以实验技术研发、实验产品研发、日化产品研发、实验项目承接为一体的高新技术公司;已有研究证明,可以诱导酵母细胞凋亡,并且伴随着胞内活性氧(ROS)水平的升高,但是关于诱导酵母细胞凋亡的调控机制研究尚处在起步阶段,尤其是动物体内相对保守的凋亡抑制基因BCL-2和CED-9在此过程中的作用尚未见报道。公司实验中心有分子生物学平台、细胞平台、光镜平台、植物组培平台、原核蛋白表达平台、日化产品生产平台;可以开展各类动、植物、细菌、细胞等生物实验。
肌无力(Myasthenia gravis, MG)主要是由乙酰受体(AChR Ab)介导的、细胞依赖性、补体和多种参与的针对神经-肌肉接头(NMJ)处突触后膜上乙酰受体(AChR)的自身性疾病,主要靶是骨骼肌。洋葱是一种重要的世界性蔬菜,近年来我国的栽培面积和出口量迅速增加,因其鳞茎内含有的洋葱油、大蒜油、具有较好的和抗作用,很多已经把从洋葱中提取的洋葱油列为抗病物质。但是,临床上仍有15%以上的MG患者...
武汉思特进科技发展有限公司成立于2007年,是一家以实验技术研发、实验产品研发、日化产品研发、实验项目承接为一体的高新技术公司;结果显示,真空渗透法和直接注射法在瞬时表达效率上差异不大,真空渗透操作上更简便、更易掌握。公司实验中心有分子生物学平台、细胞平台、光镜平台、植物组培平台、原核蛋白表达平台、日化产品生产平台;可以开展各类动、植物、细菌、细胞等生物实验。
几丁质酶(chitinase)是一种能够将几丁质水解成N-乙酰葡糖胺的糖苷酶,广泛存在于植物细胞中,是抗真菌防卫反应体系的重要组成部分.该文深入分析了1种三七几丁质酶基因PnCHI1的功能.构建PnCHI1的亚细胞定位载体,转入洋葱表皮细胞中瞬时表达,在激光扫描共聚焦显微镜下发现PnCHI1定位于细胞壁中.构建PnCHI1的原核表达载体,诱导并纯化获得重组蛋白,体外平板抑菌实验结果显示PnCHI1原核重组蛋白对尖孢镰刀菌、茄腐镰刀菌、轮枝镰刀菌3种三七根腐病菌的菌丝生长具有很强的抑制活性.采用反向遗传学技术验证PnCHI1的功能,通过根癌农介导将PnCHI1转入中过量表达.qRT-PCR分析结果表明PnCHI1在T2代转基因中大量表达,同时叶片接种实验显示PnCHI1转基因对茄腐镰刀菌的抗性增强明显.结论:PnCHI1是定位于细胞壁的几丁质酶,体外能抑制几种三七根腐病真菌,在过表达大大提高了对茄腐镰刀菌的抗性,推测PnCHI1是三七中参与根腐病防卫反应的重要抗病基因.
武汉思特进科技发展有限公司成立于2007年,是一家以实验技术研发、实验产品研发、日化产品研发、实验项目承接为一体的高新技术公司;公司实验中心有分子生物学平台、细胞平台、光镜平台、植物组培平台、原核蛋白表达平台、日化产品生产平台。公司实验中心有分子生物学平台、细胞平台、光镜平台、植物组培平台、原核蛋白表达平台、日化产品生产平台;可以开展各类动、植物、细菌、细胞等生物实验。
蒙古冰草(Agropyron mongolicum Keng)是禾本科冰草属小麦族多年生草本植物,不仅具有极高的饲用价值,而且具有很强的抗逆性,富含大量的抗旱、抗寒、耐盐基因,可以为牧草及近缘种作物(水稻、小麦、玉米等)的抗性改良及新品种选育提供宝贵的资源。Bra1编码蛋白的氨基酸序列中包含有BAHD酰基转移酶家族特有的HXXXD功能区以及DFGWG保守结构域,说明Bra1基因是BAHD酰基转移酶基因家族的一个成员。本研究分离出蒙古冰草MwLEA3基因并进行了功能验证,并得到了蒙古冰草类反转录转座子。
武汉思特进科技发展有限公司成立于2007年,是一家以实验技术研发、实验产品研发、日化产品研发、实验项目承接为一体的高新技术公司;公司实验中心有分子生物学平台、细胞平台、光镜平台、植物组培平台、原核蛋白表达平台、日化产品生产平台;可以开展各类动、植物、细菌、细胞等生物实验。它主要是以三乙酰甘油(TAG)形式存在,而TAG的主要功能和经济价值是由脂肪酸组成的不同决定的。
磷(Phosphorus, P)是植物生长发育必需的大量营养元素之一,广泛地参与到植物体内的能量转移、信号转导、光合作用等过程。它还是许多生物大分子如核酸、磷脂和含磷蛋白酶类的重要组成部分。植物油脂是人们膳食的主要成份,人类日常生活及饮食所需的油脂有71%来自植物油。然而,由于P在土壤中容易被固定和沉淀,且植物从土壤中吸收的主要是无机态正磷酸盐(Phosphate, Pi),故相对于其他营养元素,P在土壤中的移动性和有效性均很低,其也因此常常成为农田及自然生态系统中植物生长的主要限制因子之一。植物在漫长的进化过程中发展出了一套适应缺磷环境的形态变化及生理生化方面的机制,包括根系构型的改变、酸性磷酸酶、RNA酶及有机酸的分泌、与丛枝菌根真菌(AMF, Arbuscular Mycorrhizal Fungi)形成共生体系等等。
(作者: 来源:)