衬里材料的选择
氧化铝流程中浆液因含碱液,浆液温度高,所以要求电磁流量计衬里耐碱腐蚀,耐90℃左右的高温。
衬里材料可选氟塑料和陶瓷。为了使磁力线通过测量导管时磁通量被分流或短路,测量导管必须采用不导磁、低导电率、低导热率和具有一定机械强度的材料制成,可选用不导磁的不锈钢、玻璃钢、高强度塑料、铝等。氟塑料衬里早应用的是PTFE聚四氟乙烯,具有优良的耐腐蚀性能,耐温-
电磁流量计
衬里材料的选择
氧化铝流程中浆液因含碱液,浆液温度高,所以要求电磁流量计衬里耐碱腐蚀,耐90℃左右的高温。
衬里材料可选氟塑料和陶瓷。为了使磁力线通过测量导管时磁通量被分流或短路,测量导管必须采用不导磁、低导电率、低导热率和具有一定机械强度的材料制成,可选用不导磁的不锈钢、玻璃钢、高强度塑料、铝等。氟塑料衬里早应用的是PTFE聚四氟乙烯,具有优良的耐腐蚀性能,耐温-40~+180℃,在测浆料等介质时不易粘附。但它不,不能用于矿浆的测量,不能用于负压。氟塑料改良后的品种有PFA、F46,耐温耐腐蚀性能与PTFE相近,可用于真空和负压的情况下。氧化铝陶瓷衬里具有耐腐蚀、损、耐高压、耐高温(120~140/180℃),适用于腐蚀性的矿浆。但它不耐温度的剧烈变化,性脆,安装夹紧时易碎。
对物性参数影响的修正程度不同
几乎所有流量测量仪表的测量结果都受到被测介质有关物性参数的影响,只是影响程度不一样。它通常是以大量丰富的试验数据和标准化的技术要求为前提,保持了计量的试验性和一致性的特点。对于能以显函数表现其对流量测量结果影响的物性参数,只要知道这些参数的实际值,就能对其进行修正,如天1然1气相对密度、压缩因子、等熵指数等对孔板流量计测量的影响。但对大多数流量测量仪表来说,物性参数对其计量性能的影响难以用数学公式准确地表达出来,比如,在液体计量中,容积式流量计和速度式流量计对液体黏度的变化十分敏感,特别是在低黏度下和仪表测量范围的下限,目前还没有通用的黏度修正公式。在天1然1气流量测量中,天1然1气密度变化对涡轮、涡街等速度式流量计有明显的影响,若考虑流量计在低压下用空气做介质检定的结果是否能直接用于高压下的天1然1气时,在线实流检定成为完全消除物性参数影响的唯1一选择,因为干式检定、离线检定不能消除物性参数对上述流量测量仪表的影响。
弯管下游流速分布影响
流体流过弯管由于离心力作用,靠外壁产生扩散效应,内壁产生收缩效应,由此产生横向流动的二次流,引起下游产生速度分布畸变,如图1所示。图1中,右边垂直剖面弯管外缘流速较快,水平剖面呈双峰值流速分布。随着液流离开弯管距离增加,畸变会趋于缓和。
当前绝大部分电磁流量传感器是非均匀磁场分布结构设计。提高测量管内的平均流速和使用尖头小面积电极在测量容易结垢、粘附的介质时,通常可以选择比工艺管径小的传感器,提高流速。非均匀磁场理论认为包含电极的测量管横截平面区域内,各微小液体体积元切割磁力线对电极间信号“所起作用”各异,因此不是均匀地而是按“所起作用”非均匀地设计各点磁场强度,使在理想条件下流速分布畸变不会影响流量测量值。然而实际仪表还是受到一些影响。
利用模糊控制思想[4],在控制程序中我们把流量的波动区域划分为±Δx×y0,y0±0.3,y0±0.5四个区域,其中Δx为可调节的误差范围,生产中我们取0.015,流量区域划分的单位均为t/h。针对不同的区域采取不同的调整方案。在测量污水、浆液等介质时,管道内壁和电极表面容易发生结垢和产生附着物。具体流程如图3所示,图中变量Rel表示实际测量的流量,变量Idea表示理论流量。
试验结果分析
模糊控制对数学模型难以获取、动态特性不易掌握等控制对像有较理想的控制效果,在其模糊法则和决策中和参数变化对控制效果的影响被大大减弱。电磁流量计信号在进入工控之前采用均值滤波以及中值滤波后才交给控制算法处理,尽量降低带来的波动。对物性参数影响的修正程度不同几乎所有流量测量仪表的测量结果都受到被测介质有关物性参数的影响,只是影响程度不一样。采取不同的调节周期对实时的控制也很大,周期太短对流量的调节太频繁,这样容易导致流量的波动剧烈,若调节周期过长则容易导致累积误差大。经过反复实验后我们采取以周期为10 s,以上面划分的四个区域来减小流量波动带来的误差,其中当流量波动超过0. 5 t/h时,采取周期为20 s、频率±1Hz的调节方法,这样能够更好避开其工作周期的滞后和调节幅度慢的缺点,更加有效地达到调节效果。
(作者: 来源:)