可通过测量霍尔元件的电压变化得到待测微压差ΔP。图1霍尔式磁性液体微压差传感器结构示意图Fig.传感器改进部分的模型如图2所示。将霍尔元件固定在环形支架上,通过滑动支架可以改变霍尔元件测量位置,增加了传感器测量范围。环形支架的凹槽处放置霍尔元件,两个环形支架可以在滑轨上滑动,通过调节两个环形支架间距,可以改变传感器的测量量程。
以上特征峰表明CD-CHOL与PAA-Azo在气液
滚圆机价格
可通过测量霍尔元件的电压变化得到待测微压差ΔP。图1霍尔式磁性液体微压差传感器结构示意图Fig.传感器改进部分的模型如图2所示。将霍尔元件固定在环形支架上,通过滑动支架可以改变霍尔元件测量位置,增加了传感器测量范围。环形支架的凹槽处放置霍尔元件,两个环形支架可以在滑轨上滑动,通过调节两个环形支架间距,可以改变传感器的测量量程。
以上特征峰表明CD-CHOL与PAA-Azo在气液界面上通过主客体作用形成复合组装膜。图4CD-CHOL多层LB膜的红外光谱Fig.进而,对CD-CHOL多层LB膜进行XPS表征,如图5所示。图5CD-CHOL多层LB膜的XPS数据以及C1s分峰5(a)是CD-CHOL分别在纯水亚相、PAA-Azo亚相的多层膜的XPS数据,特征峰C1s、O1s、N1s的相对强度均有所不同。

其中薄膜中N元素的相对含量由纯水亚相的1.06%增加至PAA-Azo亚相的3.64%,归因于CD-CHOL/PAA-Azo复合膜中PAA-Azo分子的N元素的增量。此外,将两种薄膜的C1s特征峰进行分峰考察不同化学价态的碳元素的相对含量,如图5(b)和5(c)所示。位于284.8eV处的峰归属于C—C,CC以及C—H键,287.2eV处的峰归属于CO键。可以清楚看出,CD-CHOL/PAA-Azo复合膜的C—C与CO基团的相对含量均相比CD-CHOL水相膜中有所增加,达到76.2%以及1.5%
不同粒度硅砂配合料在1550℃的熔化状态℃图6不同粒度硅砂配合料的气泡直径平均尺寸变化论硅砂的粒度范围影响高应变点玻璃的熔制效果,包括熔制、澄清时间,玻璃样品中的气泡大孝成分的均匀性。通过本实验研究结果表明,当硅砂粒度控制在60~100目时,熔制、澄清时间都比100~150目的样品长,残留未熔物较多,玻璃均匀性也比100~150目的样品差。

(作者: 来源:)