考虑PEDOT:PSS材料本身的特性和硅表面结构光学管理后,硅与背金属电极界面的接触情况成为了制约电池效率提升的主要因素,硅/金属的直接接触会导致界面处形成肖特基势垒,对电子传输的阻碍作用极大,同时界面处严重的复合造成了载流子的损失。基于此,选用氧化锌作为电子选择性材料,将其用于界面处形成金属-介质-半导体结构,并对氧化锌进行Li掺杂调节其功函数进一步减小或消除界面势垒。而且P
导电聚合物供应
考虑PEDOT:PSS材料本身的特性和硅表面结构光学管理后,硅与背金属电极界面的接触情况成为了制约电池效率提升的主要因素,硅/金属的直接接触会导致界面处形成肖特基势垒,对电子传输的阻碍作用极大,同时界面处严重的复合造成了载流子的损失。基于此,选用氧化锌作为电子选择性材料,将其用于界面处形成金属-介质-半导体结构,并对氧化锌进行Li掺杂调节其功函数进一步减小或消除界面势垒。而且PEDOT/PSS其制作过程无副产物,容易控制,且不发生其他无关的化学聚合反应,不会影响产品的性能。另外,对硅表面通过本征非晶硅层钝化,这样既能钝化硅又能改善电接触。并结合硅金字塔陷光结构,终实现超过15%的电池转换效率。
(PEDOT∶PSS)电导率的变化以及掺杂PEDOT∶PSS薄膜对聚合物太阳能电池器件性n的影响.实验发现,向PEDOT∶PSS中掺入极性溶剂二甲j亚砜(DMSO)明显提高了薄膜的电导率,掺杂后的电导率d值达到1.25S/cm,比未掺杂时提高了3个数量级.将掺杂的PEDOT∶PSS薄膜作为缓冲层应用于聚合物电池(ITO/PEDOT∶PSS/P3HT∶PCBM/LiF/Al)中,发现高电导率的PEDOT∶PSS降低了器件的串联电阻,增加了器件的短路电流,从而提高了器件的性n.h的聚合物太阳能电池在100mW/cm2的光照下,开路电压(Voc)为0.63V,短路电流密度(Jsc)为11.09mA·cm-2,填充因子(FF)为63.7%,能量转换效率(η)达到4.45%.

PEDOT:PSS的应用领域:太阳能电池
与传统无机电池相比,聚合物太阳能电池具有重量轻、成本低、可湿法成膜制造,可做柔性器件等优点。PEDOT/PSS应用主要体现在如下方面:一方面作为透明的导电层沉积在电极活性层表面或是沉积在电极基材表面;另一方面作为缓冲层沉积在透明电极和活性层之间。该法通过2,3-二甲y基-1,3-丁二烯在正己烷溶剂中、于5~C的条件下与SC1:反应制成3,4-二甲y基s吩,然后用对甲bh酸作催化剂与乙二醇反应制得EDOT。
PEDOT:PSS的应用领域:电致变色材料
导电高分子的电致变色研究是电致变色领域中的重要研究方向。PEDOT/PSS水性涂料自身优异的可加工性为规模制造的电致变色器件提供了可能性。(2)有机电致发光(LED)有机发光二极管和聚合物发光二极管是目前显示器件研究的热点,它将是下一代显示器的有力竞争者。这类材料可应用于电致变色智能窗、电致变色显示器、无眩反射镜、电色储存器件、红外发s器件、雷达吸波材料等多个领域。
原位聚合法不需要特殊设备、操作简单、膜厚可控、可涂布于各种形状的表面,尤其对找不到合适溶液的导电聚合物和某些特殊表面具有优势,且聚合方式种类多样,合成PEDOT薄膜的全过程中可通过掺杂改变聚合物结构,获得的聚合物电导率高、应用前景广阔,是制备PEDOT薄膜对电极新的趋势。 与以往传统的和碳对电极相比,PEDOT具有高电导率、透明性以及柔性等优点。12EL-P3155耐高温,高湿,UV光LED背光,增强稳定性35014>。三种薄膜制备方法各有优缺点,促进了PEDOT薄膜对电极的发展,也使得DSSC取得了巨大的进步。
(作者: 来源:)