控制系统是利用压缩气体作为动力源,在数据采集卡和自行设计的压电驱动式电气比例阀的闭环控制下,通过光栅尺和力传感器的反馈,实现气压缸的驱动与准确定位,精度可达到+0. 001 mm。阀腔体和阀芯要求加工精度很高,圆度、不同圆柱面的同轴度,因为阀芯与阀体的配合既要保证很好地密封性能又要保证摩擦力比较低由于在影响压电叠堆位移精度的特性中,滞环特性对其影响,对压电叠堆(
半导体分选机比例阀
控制系统是利用压缩气体作为动力源,在数据采集卡和自行设计的压电驱动式电气比例阀的闭环控制下,通过光栅尺和力传感器的反馈,实现气压缸的驱动与准确定位,精度可达到+0. 001 mm。阀腔体和阀芯要求加工精度很高,圆度、不同圆柱面的同轴度,因为阀芯与阀体的配合既要保证很好地密封性能又要保证摩擦力比较低由于在影响压电叠堆位移精度的特性中,滞环特性对其影响,对压电叠堆( Tokin AE0505D16)不同路径的加压过程进行大量数据的实测分析,了解在0~+100V这一区间内的滞环特性。
压电陶瓷之所以会有变形, 是因为当加上与自发极化相同的外电场时, 相当于增强了极化强度。在电气伺服控制系统中,其核心元件是电气比例。正压电性是指某些电介质在机械外力作用下,介质内部正负电荷中心发生相对位移而引起极化, 从而导致电介质两端表面内出现符号相反的束缚电荷。当将施加在压电体上的交变电场的频率调整到驱动器固有频率相-致时,压电振子产生强烈的振动,其数值大出原有振动位移的几十倍乃至上百倍。
压电叠堆具有承载力大、响应快、位移可重复性好、体积以及电场控制相对简单等优点。谐振位移驱动器是利用压电体在谐振状态下大的位移变形来形成驱动能力的。极化强度的增大使压电陶瓷片沿极化方向伸长。相反, 如果加反向电场,则陶瓷片沿极化方向缩短。这种由于电效应转变成机械效应的现象是逆压电效应。压电叠堆的特性分析:在精密驱动机构中,驱动器是必备的重要部件,驱动器的行呢个直接影响到精密驱动机构的性能,
压电体受到外机械力作用而发生电极化,并导致压电体两端表面内出现符号相反的束缚电荷,其电荷密度与外机械力成正比,这种现象称为正压电效应.压电振子产生强烈的振动,其数值大出原有振动位移的几十倍乃至上百倍,利用此谐振状态下大的位移变形进行位移输出。具有正压电效应的固体,也必定具有逆压电效应,反之亦然. 正压电效应和逆压电效应总称为压电效应。
(作者: 来源:)