无功补偿在电力系统中的作用
1.增加电网的传输能力,提高设备利用率若 P1 和 P2 分别为补偿前、后的有功功率的出力,cosΦ1 和cosΦ2 分别为补偿前、后的功率因数,则:为补偿后的有功功率的出力增量。可见,在视在功率 S 不变的前提下,线路传输的功率的出力将有所增加,其增加值为△P:
32.降低线路损失和变压器有功损失安装无功补偿装置后
动态无功补偿方法
无功补偿在电力系统中的作用
1.增加电网的传输能力,提高设备利用率若 P1 和 P2 分别为补偿前、后的有功功率的出力,cosΦ1 和cosΦ2 分别为补偿前、后的功率因数,则:为补偿后的有功功率的出力增量。可见,在视在功率 S 不变的前提下,线路传输的功率的出力将有所增加,其增加值为△P:
32.降低线路损失和变压器有功损失安装无功补偿装置后功率因数提高,线路电流会下降,线路损耗降低,变压器的有功损失也会降低。对于高压计量的用户,在低压侧安装无功补偿装置,可降低安装点与计量点间的线损,其线损降低量与安装点的位置有关。
3.减少设备容量在保证有功负荷 P 不变的条件下,增加无功补偿时,可以减少设备容量。当功率因数提高后,在输送同样的有功功率的情况下,△S 是负值,即可以减少视在功率。
电网中常用的无功补偿方式
电网中常用的无功补偿方式包括:
①集中补偿:在高低压配电线路中安装并联电容器组;
②分组补偿:在配电变压器低压侧和用户车间配电屏安装并联补偿电容器;
③单台电动机就地补偿:在单台电动机处安装并联电容器等。
加装无功补偿设备,不仅可使功率消耗小,功率因数提高,还可以充分挖掘设备输送功率的潜力。
确定无功补偿容量时,应注意以下两点:
①在轻负荷时要避免过补偿,倒送无功造成功率损耗增加,也是不经济的。
②功率因数越高,每千伏补偿容量减少损耗的作用将变小,通常情况下,将功率因数提高到0.95就是合理补偿。
无功补偿装置常用的投切方式
无功补偿装置常用的投切方式:
(1)投切方式,又称作“静态”补偿方式。这种投切方式依靠于的接触器的动作,具有抑制电容的涌流作用。投切的目的在于防止接触器过于频繁的动作,造成电容器损坏,而更重要的是防备电容不停的投切导致供电系统振荡,这是很危险的。
(2)瞬时投切方式,又称作“动态”补偿方式,实际就是一套“随动系统”,控制器一般能在半个周波至1个周波内完成采样、计算,在2个周期到来时,控制器已经发出控制信号了。通过脉冲信号使晶闸管导通,投切电容器组大约20~30毫秒内就完成一个全部动作,这种控制方式是机械动作的接触器类无法实现的。动态补偿方式作为新一代的补偿装置有着广泛的应用前景。
(3)混合投切方式,实际上就是将“静态”与“动态”补偿的混合,一部分电容器组使用接触器投切,而另一部分电容器组使用电力半导体器件。这种方式在一定程度上可做到优势互补,比单一的投切方式拓宽了应用范围,节能效果更好。补偿装置选择非等容电容器组,这种方式补偿效果更加细致,更为理想。还可采用分相补偿方式,可以解决由于线路三相不平衡造成。

低压无功补偿装置控制器是将人工智能成功运用于低压配电设备控制
低压无功补偿装置控制器是将人工智能成功运用于低压配电设备控制系统中的
控制器是低压无功补偿装置的核心部件,有着举足轻重的低位,现有的低端控制器都是以功率因数为依据进行控制的,这种控制器虽然比低压无功补偿装置的价格低廉,但是综合性能差已逐渐被淘汰,控制器都是以低压无功补偿装置为依据进行控制的,设计的重点往往集中在汉字显示以及数据通讯等方面。
低压无功补偿装置控制器是将人工智能成功运用于低压配电设备控制系统中的,由于是低压无功补偿装置的控制器,其控制功能的完备使补偿效果达到了佳的状态。
当控制物理量为无功功率时能兼顾功率因数,较完善地解决功率因数型控制器的缺陷,在运行中既能保证线路系统的稳定、无震荡现象的出现,又能兼顾补偿效果,将低压无功补偿装置的效果发挥到。当线路处在高负荷状态时,还会再投入一组电容器;当线路无电流互感器时,控制物理量转化为电压,此时则能根据当地的电压高低自动调节电压

(作者: 来源:)