激光淬火是利用激光将材料表面加热到相变点以上,随着材料自身冷却,奥氏体转变为马氏体,从而使材料表面硬化的淬火技术。
采用激光淬火齿面,其加热冷却速度很高,工艺周期短,不需要外部淬火介质.具有工件变形小,工作环境洁净,处理后不需要磨齿等精加工,且被处理齿轮尺寸不受热处理设备尺寸的限制等优点。激光切割处于其焦点处的工件受到高功率密度的激光光斑照射,会产生10000°C以上的局部高温,
丹阳激光切割机改造
激光淬火是利用激光将材料表面加热到相变点以上,随着材料自身冷却,奥氏体转变为马氏体,从而使材料表面硬化的淬火技术。
采用激光淬火齿面,其加热冷却速度很高,工艺周期短,不需要外部淬火介质.具有工件变形小,工作环境洁净,处理后不需要磨齿等精加工,且被处理齿轮尺寸不受热处理设备尺寸的限制等优点。激光切割处于其焦点处的工件受到高功率密度的激光光斑照射,会产生10000°C以上的局部高温,使工件瞬间汽化,再配合辅助切割气体将汽化的金属吹走,从而将工件切穿成一个很小的孔,随着数控机床的移动,无数个小孔连接起来就成了要切的外形。激光淬火的功率密度高,冷却速度快,不需要水或油等冷却介质,是清洁、的淬火工艺

自适应随形激光熔覆是解决上述难题一个行之有效的方法,主要包括以下三个基本步骤:
1. 采用传感器进行在线检测:传感器可以是接触式、机器视觉、激光位移等多种,而且必须要建立起传感器测量坐标系与机器人激光熔覆工具坐标系间的对应关系;
2. 自动数据处理:包括数据滤波、重构、建模等,一些应用还需要实现自动模型匹配、缺陷辨识等智能算法;
3. 自动路径生成和工艺参数配置:在自动数据处理所建立模型基础上,进行分层切片、生成填充轨迹,并根据缺陷类型,自动选择优化工艺参数。

激光焊接(熔覆)变形小
主要是熔铸区域小,过渡区域小,收缩量小。那么材料在收缩过程中所产生的收缩力,不足以使整个机体变形,这就是所谓激光熔覆不变形的原因(所以当机体尺寸过小时同样会产生变形),这也是激光焊接(熔覆)的优势。
那么,这种焊接应力到哪里去了呢?它主要是释放到熔铸区域和过渡区域了。那么,这就产生了两个问题:
一是熔铸区容易产生裂纹,所以,激光熔覆对材料的延展性要求比较高,如镍基粉末;
二是过渡区应力大,由于激光焊接过程中加热快冷却快,产生的过渡区尺寸过小,造成这一区域应力集中,这就影响了激光焊接(熔覆)的结合效果。3.激光器应具有高的可靠性,应能满足工业加工环境下的连续工作。特别是在基体与焊材机械性能相差较大时,倾向更严重,甚至产生脱落现象,这就要求在激光熔覆时,格外注意过渡层的材质和厚度设计。
(作者: 来源:)