离子陶瓷
快离子导电的电子陶瓷。具有传递正离子的特性。因此,可以根据需要,综合二相材料的优点,制作良好性能的换能器和传感器。典型代表是 β-Al2O3 瓷。这种陶瓷在300℃下离子电导率可达0.1/(欧·厘米),可用来制作较经济的高比率能量的固体电池,还可制作缓慢放电的高储能密度的电容器。它是有助于解决能源问题的材料。
半导体
批量定制压电陶瓷
离子陶瓷
快离子导电的电子陶瓷。具有传递正离子的特性。因此,可以根据需要,综合二相材料的优点,制作良好性能的换能器和传感器。典型代表是 β-Al2O3 瓷。这种陶瓷在300℃下离子电导率可达0.1/(欧·厘米),可用来制作较经济的高比率能量的固体电池,还可制作缓慢放电的高储能密度的电容器。它是有助于解决能源问题的材料。
半导体陶瓷
通过半导体化措施使陶瓷具有半导电性晶粒和绝缘性(或半导体性)晶界,从而呈现很强的界面势垒等半导体特性的电子陶瓷。
电子仪器中的光电耦合器件。
细晶粒压电陶瓷
以往的压电陶瓷是由几微米至几十微米的多畴晶粒组成的多晶材料,尺寸已不能满足需要了。减小粒径至亚微米级,可以改进材料的加工性,可将基片做地更薄,可提高阵列频率,降低换能器阵列的损耗,提高器件的机械强度,减小多层器件每层的厚度,从而降低驱动电压,这对提高叠层变压器、制动器都是有益的。减小粒径有上述如此多的好处,但同时也带来了降低压电效应的影响。粉碎的目的主要是使经过反应的瓷料达到一定的细度,为成型和烧成创造有利条件。为了克服这种影响,人们更改了传统的掺杂工艺,使细晶粒压电陶瓷压电效应增加到与粗晶粒压电陶瓷相当的水平。现在制作细晶粒材料的成本已可与普通陶瓷竞争了。近年来,人们用细晶粒压电陶瓷进行了切割研磨研究,并制作出了一些高频换能器、微制动器及薄型蜂鸣器(瓷片20-30um厚),证明了细晶粒压电陶瓷的优越性。随着纳米技术的发展,细晶粒压电陶瓷材料研究和应用开发仍是近期的热点。
压电陶瓷点火器
这是一种将机械力转换为电火花而点燃燃烧物的装置,是机电换能器。
1958
年开创利
用钛酸钡
(BaTiO
)
陶瓷的压电效应进行点火,
但这种材料着火率不高,
噪音大,
1962
年开始试用锆钛酸铅(
PZT
)压电陶瓷制作点火器,这种点火器广泛应用日常生活、工
业生产以及军事方面,用以点燃气体和各类扎药和火箭的引燃引爆


(作者: 来源:)