数据模型的三要素是数据结构、数据操作和数据约束。数据模型是数据特征的抽象,它从抽象层次上描述了系统的静态特征、动态行为和约束条件,为数据库系统的信息表示与操作提供一个抽象的框架。模型可更形象、直观地揭示事物的本质特征,使人们对事物有一个更加了解、深入的认识,从而可以帮助人们更好地解决问题。利用模型对事物进行描述是人们在认识和改造世界过程中广泛采用的一种方法。计算机不能直接处
大数据模型
数据模型的三要素是数据结构、数据操作和数据约束。数据模型是数据特征的抽象,它从抽象层次上描述了系统的静态特征、动态行为和约束条件,为数据库系统的信息表示与操作提供一个抽象的框架。模型可更形象、直观地揭示事物的本质特征,使人们对事物有一个更加了解、深入的认识,从而可以帮助人们更好地解决问题。利用模型对事物进行描述是人们在认识和改造世界过程中广泛采用的一种方法。计算机不能直接处理现实世界中的客观事物,而数据库系统正是使用计算机技术对客观事物进行管理,因此就需要对客观事物进行抽象、模拟,以建立适合于数据库系统进行管理的数据模型。数据模型是对现实世界数据特征的模拟和抽象。
数据模型简介在神策分析中,我们使用事件模型(Event 模型)来描述用户在产品上的各种行为,这也是神策分析所有的接口和功能设计的依据。
简单来说,事件模型包括事件(Event)和用户(User)两个实体,同时配合物品(Item)实体可以做各种维度分析,在神策分析中,分别提供了接口供使用者上传和修改这两类相应的数据,在使用产品的各个功能时,这两类数据也可以分别或者贯通起来参与具体的分析和查询。
拓展资料:
1.数据结构是所研究的对象类型的集合。这些对象是数据库的组成成分,数据结构指对象和对象间联系的表达和实现,是对系统静态特征的描述。
2.数据操作是对数据库中对象的实例允许执行的操作集合,主要指检索和更新两类操作。数据模型必须定义这些操作的确切含义、操作符号、操作规则以及实现操作的语言,数据操作是对系统动态特性的描述。
3.数据完整性约束是一组完整性规则的集合,规定数据库状态及状态变化所应满足的条件,以保证数据的正确性、有效性和相容性。
4.作用是空间数据模型是关于现实世界中空间实体及其相互间联系的概念,它为描述空间数据的组织和设计空间数据库模式提供着基本方法。
数据建模,通俗地说,就是通过建立数据科学模型的手段解决现实问题的过程。数据建模也可以称为数据科学项目的过程,并且这个过程是周期性循环的。
数据建模的具体过程可分为六大步骤:
一、制订目标
制订目标的前提是理解业务,明确要解决的商业现实问题是什么?
如:在社交平台KOL中,存在假粉丝的情况,如何识别假粉就是一个要解决的现实问题。
二、数据理解与准备
基于要解决的现实问题,理解和准备数据,一般需要解决以下问题:
1.需要哪些数据指标(即特征提取)?(如:哪些指标能区别真粉和假粉?)
2.数据指标的含义是什么?
3.数据的质量如何?(如:是否存在缺失值?)
4.数据能否满足需求?
5.数据还需要如何加工?(如:转换数据指标,将类别型变量转化为0-1哑变量,或将连续型数据转化为有序变量)
6.探索数据中的规律和模式,进而形成假设。
需要注意的是,数据准备工作可能需要尝试多次。因为在复杂的大型数据中,较难发现数据中存在的模式,初步形成的假设可能会被很快推到,这时一定要静心钻研,不断试错。
数据建模后需要评估模型的效果,因此一般需要将数据分为训练集和测试集。
(作者: 来源:)