以室温离子液体(RTIL)六氟磷酸正丁基(BPPF6)代替传统固体石蜡为粘合剂与石墨粉相混合制备了一种新型的离子液体修饰碳糊电极(RTIL/CPE).优化出制备电极时石墨与BPPF6的比例为3:1(w/w),采用扫描电子显微镜对其表面形貌进行了表征,以铁为电化学探针对RTIL/CPE的电化学行为进行了研究,并与传统石蜡碳糊电极(CPE)进行了比较.结果表明由于BPPF6具有较高的导
电镀涂层
以室温离子液体(RTIL)六氟磷酸正丁基(BPPF6)代替传统固体石蜡为粘合剂与石墨粉相混合制备了一种新型的离子液体修饰碳糊电极(RTIL/CPE).优化出制备电极时石墨与BPPF6的比例为3:1(w/w),采用扫描电子显微镜对其表面形貌进行了表征,以铁为电化学探针对RTIL/CPE的电化学行为进行了研究,并与传统石蜡碳糊电极(CPE)进行了比较.结果表明由于BPPF6具有较高的导电性,使RTIL/CPE比CPE具有更高的导电效率,铁在电极上的可逆性变好,ΔEp值为64mV,峰电流响应增加3.5倍,电极过程由吸附控制变为扩散控制,根据计时库仑法求解出铁的扩散系数为1.39×10-4cm2/s.

研究了中性红在玻碳电极表面电聚合成膜的方法和条件,对膜内电荷传输过程和电化学特性分别用循环伏安技术和电位阶跃暂态技术进行了初步探讨.该膜对维生素C和亚盐有较强的电催化作用,催化电流与底物浓度在很宽的范围内呈线性关系,可用于实际样品的分析.为拓展碳纳米管的实际应用 ,对碳纳米管应用于超级电容器的电极材料的特点作了深入分析.碳纳米管电极具有的孔隙结构和高比表面积利用率 ;碳纳米管表面可以形成丰富的官能团 ,具有较好的吸附特性.此外 ,作者提出了采用酸处理或球磨工艺打断碳纳米管,提高其内腔利用率的方法.可以预料 ,碳纳米管在这一领域将得到广泛应用

碳纳米管已被应用于电极材料, 但未得到良好的电化学伏安行为[1]; 且由于碳纳米管的直径很小(几到数十纳米), 制作单根的碳纳米管电极非常困难, 难以实际应用.碳纳米管用于修饰电极已得到更多重视[2~4], 但都在常规尺寸(毫米级)的电极上进行, 这样的电极不适于在生物微环境和毛细管电泳电化学检测中应用.采用细胞色素C法和Ti(Ⅳ)-5-Br-PADAP法证实了三维电极降解废水COD过程中有活性物质H2O2及*OH自由基的存在;采用红外光谱对废水处理前后的有机物结构进行了研究.并对三维电极方法降解废水COD的机理进行了探讨.

(作者: 来源:)