氢系统管路安装位置及走向要避开热源及可能产生电弧的地方,至少应有200mm的距离。尤其管路接头这种潜在漏点不能位于密闭的空间内。高压管路及部件位于可能产生静电的地方要可靠接地或有其他控制氢泄漏量及浓度的措施,即便在产生静电的地方,也不会发生安全问题;
储氢容器和管路一般不应安装在乘客舱、行李舱或其他通风不良的地方;如果不可避免要安装在行李舱或其他通风不良的
70MPa储氢瓶公司
氢系统管路安装位置及走向要避开热源及可能产生电弧的地方,至少应有200mm的距离。尤其管路接头这种潜在漏点不能位于密闭的空间内。高压管路及部件位于可能产生静电的地方要可靠接地或有其他控制氢泄漏量及浓度的措施,即便在产生静电的地方,也不会发生安全问题;
储氢容器和管路一般不应安装在乘客舱、行李舱或其他通风不良的地方;如果不可避免要安装在行李舱或其他通风不良的地方,应设计通风管路或其他措施,将可能泄漏的氢气及时排除;
供氢系统
公告冲击试验
车载供氢系统集成在设计过程中,由于结构设计考虑不到位,有可能需要多进行几轮的优化,直到满足标准要求。锁定车载供氢系统方案后,开始准备车载供氢系统样件进行公告试验,同时也是验证我们有限元分析结果的可靠性。
如下图所示,这是一款由奥扬科技为匹配某款物流车设计的车载供氢系统,压力等级为35MPa。完全依据模拟路况的条件进行试验,经过±X、±Y、±Z六个方向8个g的加载冲击后,检查车载供氢系统的变化,满足GB/T 26990-2011《燃料电池电动汽车车载氢系统技术条件》、GB/T 29126-2012《燃料电池电动汽车 车载氢系统试验方法》要求。同时试验后的车载供氢系统做了一轮常规的保压测试,确保了冲击后的车载供氢系统没有发生泄露。
氢燃料电池车上供氢系统可以分为两部分,一部分为车载高压供氢系统, 一般由储氢瓶供应商或者供氢系统供应商提供;另一部分为低压供氢部分,一般集成在燃料电池发动机上。
系统构成:供氢系统包括加氢模块、调压模块(组合阀)、储氢瓶。
加氢模块:包含加氢口及高压压力表,加氢口集成有加氢接头TN1、TN5. 15um过滤器及单向阀 等功能部件。加氢模块还可根据用户要求集成高压排气阀,用于气瓶内气体置换及车辆维修、保养时主动排放气瓶内高压氢气。
调压模块(组合阀):高度集成,功能强大,供氢系统大幅简化。组合阀内部包含有过滤器、减压阀、低压泄放阀、排气截止阀、压力传感器(选配)等功能部件。低压泄放阀用于在减压阀出现锁闭故障而导致出口压力超压时,通过低压排气管路泄放超压氢气。排气截止阀用于气体置换、氢系统维修、保养时,主动排放瓶阀下游管路内的氢气。
储氢瓶:包含高压复合材料气瓶、气瓶支架及连接管路等,每只瓶口配置一个瓶阀,瓶阀配置一个TPRD,气瓶通过管路并联。
功能:车载智能氢系统实现加氢口—储氢系统—燃料电池之间的氢气的充装、储存、减压、切断功能,通过对高低压力、温度、
氢泄漏浓度的监控保障系统安全运行;
燃料电池是一种将化学能转化为电能的装置,其特点是环保、供电能力强、无噪声。纯燃料电池动力系统由于功率响应速率较慢、无法存储电能等原因,无法单独满足车辆行驶要求,一般与蓄电池组成混合动力为车辆提供动力。
在众多的燃料电池中,质子交换膜燃料电池具有温度适中,启动速度快,比能量高等特点是燃料电池汽车合理解决方案。
质子交换膜燃料电池主要通过电化学反应,将储存在氢氧燃料中的电化学转化为电能,驱动车辆行驶,是未来清洁能源汽车发展的重要趋势
(作者: 来源:)