为了探索大负荷大流量风机的关键气动设计技术和内部流动机理,本文设计了一台可逆转耐高温轴流风机,其压力比为1.20,负荷系数为0.83。详细研究了流量系数、反力等设计参数的影响规律,给出了相应的选择原则。分析了叶片负荷调节、叶片弯曲和叶片端部弯曲对叶栅流动、级匹配和级性能的影响,给出了高负荷轴流风机三维叶片设计的基本原则。同时,开发了S1流面协同优化方法,
可逆转耐高温轴流风机
为了探索大负荷大流量风机的关键气动设计技术和内部流动机理,本文设计了一台可逆转耐高温轴流风机,其压力比为1.20,负荷系数为0.83。详细研究了流量系数、反力等设计参数的影响规律,给出了相应的选择原则。分析了叶片负荷调节、叶片弯曲和叶片端部弯曲对叶栅流动、级匹配和级性能的影响,给出了高负荷轴流风机三维叶片设计的基本原则。同时,开发了S1流面协同优化方法,取得了较好的效果。降低了定子损耗,增大了风机裕度。高压风机的设计通常采用离心风机,但离心风机存在迎风面积大、流量小、效率低等缺点。对多级压缩机表明,叶根倒角还可以减小角区的失速,提高工作范围。针对大流量、高压力比、率的设计要求,如何完成单级轴流设计成为研究的重点。长期以来,轴流风机的设计方法得到了发展。从孤立叶型法、叶栅法、降功率法到目前广泛采用的准三维、全三维气动设计方法,甚至到S1流面叶型优化[6]、三维叶型优化、可逆转耐高温轴流风机三维叶型技术,已经有了大量的研究工作。用于提高设计方法的准确性和性。以率、高负荷为设计目标,通过合理选择总体参数,优化了可逆转耐高温轴流风机流面叶片的初步设计和三维叠加,实现了轴流风机的气动设计。

通过对可逆转耐高温轴流风机设计参数和S2设计参数的多次迭代,得到了一个接近设计要求的初步三维设计方案。从表2可以看出,初步设计方案的气动参数与一维设计结果吻合较好。风机设计过程中一维参数的设计精度足以支持设计工作的进一步发展。表2显示了一维设计结果和初步设计的平均质量参数。由表2可以看出,单级风机平均半径处的负荷系数约为1.0,甚至高于普通航空发动机压气机的负荷系数。同时,单级风机的反应性略大于0.5,平均负荷分布在静、动叶片上,使可逆转耐高温轴流风机叶片展开中部的弯曲角度达到40度以上,扩压系数达到0.5以上。采用FLUENT软件对OB-84动叶可调轴流风机在均匀和非均匀间隙下的性能进行了数值模拟,讨论了不同间隙形状对泄漏流场和间隙损失分布的影响。从出版的文献中不难找到。考虑到轴流风机制造成本的限制,扩压系数接近0.6,基本达到了无主动流量控制技术的亚音速轴流风机的设计极限。然而,在可逆转耐高温轴流风机设计结果与设计目标的压力比与效率之间仍存在一定的差距,需要进一步的详细设计来弥补。由于本文设计的单级风机的负荷比设计中采用的经验公式高,因此有必要对每排叶片的稠度和展弦比进行调整。初步设计方案如图所示。6和7,以及表3所示的气动性能,其中载荷系数由叶尖的切线速度定义。

可逆转耐高温轴流风机在实际应用过程中,叶片型线的优化可能面临一个问题。不同叶片高度的不同进水条件导致叶片型线优化结果差异过大,难以对叶片型线进行过度优化。为此,本文提出了多截面轮廓协同优化的方法,建立了轮廓几何与轮廓目标函数之间的关系,使得到的轮廓满足三维实际要求。在优化过程中,增加了叶片型线的几何分析和设计点气流角的调整模块,以保证获得的叶片型线能达到与原型相同的气流转向能力。同时,可逆转耐高温轴流风机设计点的气动性能满足一定要求,否则,可以以罚函数的形式尽快完成叶型的气动分析,提高优化过程的性。在确定优化目标时,综合考虑了设计点的性能和非设计条件,可逆转耐高温轴流风机对有效范围内的剖面性能进行了研究。本文以方案中可逆转耐高温轴流风机的定子叶片为例进行了详细设计,优化了S1流面叶型,可逆转耐高温轴流风机采用三维叶片技术改善了定子叶栅内的流动。目标函数括号中的项为设计点损失,第二项为有效流入流角范围,边界为设计点损失的1.5倍,第三项为失速裕度,第四项为有效流入流角范围内的平均损失,第五项为平均损失差的方差。有效流入角范围内的分布。分子是分析叶片外形的气动性能,分母是原型参考值。可逆转耐高温轴流风机利用加权因子w对截面之间的关系进行加权,设置目标函数,得到损失小、失速裕度高的多截面S1剖面。各参数的权重和各截面的权重系数决定了优化目标是集中于中间截面的性能,以及中间截面的损失和末端截面的失速裕度。
(作者: 来源:)