粉末冶金生胚强度
粉末冶金生胚强度的概念粉末冶金生坯强度是指冷压的粉末压坯的机械强度。粉末冶金零件生坯具有适当的强度是必要的,以便压坯从阴模中脱出和将其运送到烧结炉而不会损坏。生坯强度取决于金属粉末的种类与施加的压力。软金属的粉末、不规则颗粒形状或多孔性颗粒结构的粉末都具有较高的生坯强度。对于软金属,用较低的压力即可生产出能够进行搬运的压坯。较硬的粉末则需要较高的压力。对于混炼时粉末和粘结剂的加
粉末冶金烧结
粉末冶金生胚强度
粉末冶金生胚强度的概念粉末冶金生坯强度是指冷压的粉末压坯的机械强度。粉末冶金零件生坯具有适当的强度是必要的,以便压坯从阴模中脱出和将其运送到烧结炉而不会损坏。生坯强度取决于金属粉末的种类与施加的压力。软金属的粉末、不规则颗粒形状或多孔性颗粒结构的粉末都具有较高的生坯强度。对于软金属,用较低的压力即可生产出能够进行搬运的压坯。较硬的粉末则需要较高的压力。对于混炼时粉末和粘结剂的加入顺序也有比较严格的规定,加料的顺序一般是先加入高熔点组元熔化,然后降温,加入低熔点组元,然后分批加入金属粉末。
要理解粉末冶金生坯强度,就必须知道哪种力使金属之间产生黏着。当使清洁的金属表面相互接触时,由于它们之间的接触面积小,从而它们之间的黏着力小。施加压力使接触面积增大,不管颗粒形状和表面粗糙度如何,这种接触面积大体上正比于施加的压力。对粉末冶金生坯强度的这种解释就将重点放在了建立颗粒之间原子与原子的金属接触。如上所述,与球形颗粒粉末相比,不规则形状颗粒压制的压坯具有较高的生坯强度。这种较高的强度来自于粉末冶金压坯中不规则形状颗粒之间的相互联锁。对相互联锁现象的解释仍然有争议,但看起来可能是由于在由不规则颗粒压制的压坯中,在相当大程度上,相邻颗粒之间形成了较好的原子接触。MIM技术起源于欧洲部分,开始用于军事装备部件开发并得到应用。
粉末冶金工艺很适用于大批量生产这类的零件。它可以为各种形状复杂的零件生产设计且不浪费材料。不过,制造铁框在技术上并非易事。在早期开发中,使用传统润滑剂,诸如硬脂酸锌与EBS腊等进行过生产试验,生坯废品率高达50%。目前,有通过用温压提高生坯密度和通过采用模壁润滑减少或消除混合粉中的润滑剂的方法来提高生坯强度。吸热型气氛与放热型气氛相比较,是一种还原性更强、碳势更高的可控气氛,在粉末冶金中主要用于铁基零件和铜基零件烧结时作保护气氛,有时也作为渗碳剂使用。

金属粉末冶金中的烧结气氛相关
金属粉末冶金是一种利用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结制成金属或合金零部件的技术。运用该技术可直接生产多孔、半致密或全致密的材料和制品,因此应用十分广泛。在金属粉末冶金制品烧结中,烧结气氛是影响烧结制品性能的重要因素之一。粉末烧结气氛是指粉末冶金制品在烧结时,烧结炉内的实际气氛,常用的烧结气氛主要有保护气氛、可控气氛和空气。粘结剂是MIM技术的核心,MIM与常规粉末冶金方法相比的一个重要差异即粘结剂含量高。下面我们就一起来了解一下:


一、保护气氛:保护气氛分为还原性气氛和中性气氛,还原性气氛又分为氢气和分解氨。在烧结过程中,保护气氛的主要作用是保护烧结制品不被氧化。
氢气在一定的温度条件下具有很强的渗透性,是一种化学活性较强的可燃性无毒气体,常在钨、硬质合金、不锈钢等难熔粉末冶金制品的烧结中作为保护气氛;
分解氨是液氨经热分解后获得的由氢和氮组合的混合气体,在粉末冶金中即可作为还原剂,也用来作为烧结气氛,除了某些含有氮成分的制品因与该气氛产生化学反应不能采用这种气氛烧结以外,大多数的金属都可采用这种气氛来烧结。
中性气氛:中性气氛主要包括氮气、氨气和真空,真空烧结能够避免气氛中的有害成分对粉末冶金零件造成污染等不利影响。
二、可控气氛:这类气氛分为放热型(不需要从外部供热)和吸热型气氛(需要从外部供热),都由碳氢化合物转化而成。
放热型可用于控制粉末冶金(含注射成形)烧结制品中的碳含量控制,分为淡型和浓型气氛,淡型放热气氛的碳势很低,用作低碳钢、铜制品的烧结时,只用作无氧化加热;浓型放热气氛的碳势较高一些,可用作防止粉末冶金铁基、铜基零件的的氧化和减少铁基零件的脱碳。黑色金属表面经“发蓝”处理后所形成的氧化膜,其外层主要是四氧化三铁,内层为氧化亚铁。
吸热型气氛与放热型气氛相比较,是一种还原性更强、碳势更高的可控气氛,在粉末冶金中主要用于铁基零件和铜基零件烧结时作保护气氛,有时也作为渗碳剂使用。
三、空气气氛:这种烧结气氛主要是在烧结炉内通过一定空气气体,也可以看作是在常压状态下烧结,一般在金属复合材料和陶瓷材料的烧结制品中应用
MIM如何选择粘结剂
粘结剂是MIM技术的核心,MIM与常规粉末冶金方法相比的一个重要差异即粘结剂含量高。粘结剂的主要作用是充当粘结金属粉末颗粒流动的载体以及成型后保持工件形状。
MIM用粘结剂应满足如下要求:
与粉末接触角小,粘附力强且不与粉末反应;射出温度范围内粘度变化不大,但冷却时粘度变化速度快不易粘模;用量少,用较少的粘结剂能使混合料产生较好的流变性;
粘结剂的选择十分关键,若粘结剂选择不当可能产生以下缺陷:
粘结剂是怎么分类的?
一个实用的粘结剂一般由几种组元组成,每种组元有各自的功能,按照功能可以分为主要粘结剂、次要粘结剂和添加剂这几种。根据粘结剂体系中主要粘结剂组元及其性质可以把粘结剂体系分为热塑性粘结剂、热固性粘结剂、凝胶体系和水溶性粘结剂以及特殊体系等。MIM的发展进程20世纪70年代,美国学者Wiech首先开发出一种对金属粉末进行注射成形的粉末冶金工艺。
其中,热塑性粘结剂应用广泛,分为石蜡基粘结剂、油基粘结剂、聚合物基粘结剂等。下表列出了几种主要MIM粘结剂体系的优缺点 :
热塑性粘结剂一般由高分子聚合物、低分子物质以及必要的添加剂组成(石蜡基粘结剂、油基粘结剂等分类是根据低分子物质来区分的)。各组成部分作用如下:
高分子聚合物:黏度高,强度高,在注射后及脱脂过程中保持坯块形状低分子物质:粘度低,流动性好,脱脂过程中能在较低温度下首先被脱除,在坯块中留下连通空隙,有利于后期热熔脂的进行添加剂:改善应力、降低粘度、增加润湿性或润滑性等
AIM(铝合金粉末注射成形)工艺简介
铝合金粉末注射成形(Aluminium alloy injection moulding,简称AIM)是一种新型的铝合金成形技术。
它类似于金属粉末注射成形技术(MIM),是粉末注射成形(PIM)技术的主要分支,都是从注射成形技术上发展而来的,是目前国际上发展快、应用广的铝合金零部件加工技术。
AIM是先将粉末与粘结剂进行均匀混炼,然后将混合物料经造粒机造粒,再注射到成形模具腔完成所需要的形状。混合的熔体经过加温有良好的流动性,这样在注射时有助于制品成形,而且能充分保持产品的密度均匀性。经过成形的制品还需要脱脂再经烧结炉烧结,有的产品还要进行一些后处理。四、金属热处理的第四把火——回火:1、回火为了降低钢件的脆性,将淬火后的钢件在高于室温而710℃的某一适当温度进行长时间的保温,再进行冷却,这种工艺称为回火。
这种的技术适合大批量、各种形状复杂的零件生产,包括一些极其复杂的三维立体形状,且生产的产品无需机加工或仅少量加工,大大降低了生产成本,而且使工作效率大大提高。
因注射过程都是经过精细的温度和压力进行注射,所以成形的制品具有极高的精度和非常均匀的密度。
AIM铝合金注射成形技术能加工生产形状极其复杂的零件,zui小可以加工0.1g的微小型零件;生产的产品组织均匀、精准度极高,表面光洁;而且生产的产量稳定,生产,适于大批量生产。
由于AIM在精度和工作效率上表现出机加工无法比拟的优势,目前已应用到航海航空、机械、汽车、精密仪器等多个行业。随着机械工业的不断发展,目前AIM已成为世界上铝合金零部件加工领域发展快的铝合金加工技术,得到越来越多行业的青睐。
-->