土地利用为主的好氧发酵技术路线
好氧堆肥是在有氧情况下,通过微生物的发酵作用,将污泥转变为肥料的过程。其中有机物料代谢为二氧化碳、水和热。
好氧堆肥的优点包括:
1、发酵,稳定化时间相对短;2、臭味少,实现灭菌;3、含水率可降到40%;4、污泥成品主要用于修复盐碱地、城市绿化、垃圾场覆盖以及建筑等方面用土;5、并衍生出蚯蚓生物堆肥等来强化堆肥效果,比如兴蓉环
除湿污泥节能干化公司
土地利用为主的好氧发酵技术路线
好氧堆肥是在有氧情况下,通过微生物的发酵作用,将污泥转变为肥料的过程。其中有机物料代谢为二氧化碳、水和热。
好氧堆肥的优点包括:
1、发酵,稳定化时间相对短;2、臭味少,实现灭菌;3、含水率可降到40%;4、污泥成品主要用于修复盐碱地、城市绿化、垃圾场覆盖以及建筑等方面用土;5、并衍生出蚯蚓生物堆肥等来强化堆肥效果,比如兴蓉环境和绿山的合作。
堆肥的难点主要包括:
1、能量净支出,通风能耗费用占比80%;2、需对好氧堆肥运行的不同阶段的合理通风量加强研究;3、缺少C/N 等控制因素的理论研究,致使存在调理添加剂使用过多的情况。
污泥经发酵后转化为腐殖质,可限制性农用、园林绿化或改良土壤,从而实现污泥中有机质及营养元素的利用,设备投资少、运行管理方便。但占地面积大、发酵产品存在重金属污染等缺点使得好氧发酵技术在我国较难发展。
目前污泥好氧发酵工程可采用、、稳定、集约化的设计、运营模式,可实现占地面积的大幅缩小;此外,研究表明我国城市生活污泥的重金属超标比例约5%,污染风险较小,不应该成为限制污泥发酵产品土地利用的主要障碍。
因此,在《城镇污水处理厂污泥处理处理技术指南(试行)》中,“好氧发酵+土地利用”也被列为推荐技术路线。该技术在相对欠发达地区,应用前景较大
垃圾焚烧炉
减量化:垃圾通过高温焚烧,减容减重。重量减少约80%,体积减少约90%;
无害化:垃圾收运、储存、处理全过程化降低对环境、人体健康造成的不利影响。
1、垃圾收运全程密封,防止臭气、渗滤液外溢;
2、储存区负压抽气至焚烧炉燃烧,高温850℃以上分解有毒气体;
3、烟气净化系统,排放指标优于标准;
资源化:对垃圾中的材料、能源进行直接或再生利用。
1、生活垃圾焚烧发电约250-300度/吨,一个1000吨/天的生活垃圾焚烧发电厂年上网电量约1亿度≈节约3万多
吨标准煤;
2、炉渣通过加工制成免烧砖,用于建筑工地、路面铺设等;
3、渗滤液处理后用于厂区作业冷却、植被浇灌等。
生物质耦合对燃煤锅炉的影响分析
(1.1)混烧比例问题
生物质含水量高,与煤混烧后锅炉产生的烟气量较大,直接采用现有锅炉,烟气超过一定限度后热交换器很难适应因此,没有经过改造的锅炉在混合燃烧中生物质的份额不能太多秸秆的额定掺烧比例按热值计为单位输入热量的20%,质量比约为30%本项目掺烧比例从热量比不到10%,从质量不到20%经过实践的案例,影响不大
(1.2)生物质燃料引起的结渣和腐蚀
掺烧一定量的生物质,由于生物质的灰熔点较低,燃烧过程中设备容易产生结渣问题特别是燃用含氯较多的生物质如秸秆和稻草等,当热交换器表面温度超过400℃时,还会产生高温腐蚀,必须控制掺烧量(10%以内)
(1.3)催化剂失活
用于控制SOX、NOX排放的烟气净化系统,在燃烧生物质时,生物质中碱金属的存在,需加强对NOX催化剂老化或失效的影响监控管理
污泥处理行业

的关键就是提升技术应用工艺和优化产业链融合。随着水处理技术、大数据等方面的发展,已经有很多污泥处理企业在积极的推进这块,试图利用这些技术解决一些固有的痛点。而间接干化是污泥和导热介质(这种介质可能是蒸汽、导热油或者热空气)通过蒸发受热面进行热量传递,传热面和污泥间进行翻转或搅拌不断更新加热介面,通过充分与被加热的受热面接触,使污泥所