以化学和相关边缘科学为基础,结合现代电化学和电分析化学的新发展,系统地介绍了化学修饰电极的由来、表面分子设计与制备、表征方法、膜内的电荷传输、电极过程动力学、功能与效应及其在生物传感器、蛋白质的电子转移、流动体系和分析中的应用,展望了化学修饰电极的发展前景,并以近期受到关注的无机膜和聚合物膜修饰电极另列章节分别论述。 本书是著者以长春应用化学研究所电分析化学开放实验室多年的化学修饰
电镀阳极
以化学和相关边缘科学为基础,结合现代电化学和电分析化学的新发展,系统地介绍了化学修饰电极的由来、表面分子设计与制备、表征方法、膜内的电荷传输、电极过程动力学、功能与效应及其在生物传感器、蛋白质的电子转移、流动体系和分析中的应用,展望了化学修饰电极的发展前景,并以近期受到关注的无机膜和聚合物膜修饰电极另列章节分别论述。 本书是著者以长春应用化学研究所电分析化学开放实验室多年的化学修饰电极研究工作为基础写成的。概述了国际上有关的新研成果,便于读者了解该领域的前沿和发展方向。

将所得样品用于改性MnO2电极.恒流放电测试结果表明,样品掺 杂量在1.25%~5.00%间对MnO2有良好的改性效果,可使改性MnO2的放电容量得到极大提高.循环伏安测试结果表明,铅的掺入改变了MnO2的 放电机理.在循环扫描过程中,掺杂物与MnO2均不再以单纯氧化物的形式存在,而是形成了一系列Pb(X)(X=O,Ⅱ)Mn(Y)(Y=Ⅳ,Ⅲ,Ⅱ)复 合物的共氧化与共还原,抑制了电化学惰性物质Mn3O4的生成和积累,从而有望改善MnO2的可充性能.纳米PbO2与常粒径PbO2(标记为S)对 MnO2的改性机理类似.但前者对MnO2的改性效果明显优于后者.当恒流放电至-1.0 V时,其放电容量较S样改性MnO2的放电容量平均高出约30%.

电化学超级电容器以其的大容量、大电流充放电和高的循环使用寿命等特点,受到世人的青睐,致使许多新型的电化学超级电容器电极材料相继被发现和应用.为进一步促进电化学超级电容器的发展,在综述了近年来出现的各种电化学超级电容器电极材料的基础上,提出按材料种类将其分为四大系列:碳材料系列、过渡金属氧化物系列、有机导电聚合物系列和其他系列.并就其各自的特点和性能进行了分析比较,得出了碳材料系列主要向高比表面积和可控微孔孔径方向发展和过渡金属氧化物系列主要向提高材料本身的利用率方向发展以及导电聚合物系列主要向无机、有机杂化方向发展的结论.

导电聚合物是一类重要的超级电容器电极材料,其电容主要来自于法拉第准电容.采用不同掺杂方式的导电性聚合物(n型或p型)作为电极材料使相应的超级电容器分为3种基本类型,这3种类型的超级电容器各具有不同的导电结构及特性.介绍了超级电容器导电聚合物的工作原理和导电聚合物电极材料的研究进展.用光电流作用谱,光电流-电势图和UV-Vis光说研究了TiO2/聚吡咯多孔膜电极在不含氧化还原对和含不同氧化还原体系电解质溶液中的光电转换过程.TiO2/聚吡咯多孔膜电极双层n型半导体结构,内层TiO2多孔膜的禁带宽度为3.26eV,外层聚吡咯膜的禁带宽度为2.2eV.

(作者: 来源:)